
Contents
1 Test Bed Engine 31.1 Test Bed Login . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2 Running TBE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.3 Subsystem Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.4 Data Stru
tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91.5 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Web Interfa
e Unit 112.1 CAN Identi�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.2 Test Case Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.3 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.4 Test Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 CAN Monitor Unit 193.1 CAN Composer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193.2 CAN Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1





Test Bed Engine Chapter11.1 Test Bed LoginThe Test Bed Engine (TBE) must be started before stru
tured tests 
an be performed, or theCAN monitor 
an be used.Figure 1.1 shows an overview of the CAN 
ards installed in the test bed 
omputer (TBC). Thebottom part of the �gure 
ontains a list of whi
h satellite subsystems are simulated on whatCAN port. The users must �ll in the name of the subsystems belonging to ea
h port.

uSocket: 11
IRQ: 4IRQ: 4

uSocket: 9
Application: Subsystem1

Application: Subsystem6
uSocket: 5
IRQ: 11

Application: Subsystem4
uSocket: 7
IRQ: 9

IRQ: 9
uSocket: 9
Application: Subsystem2

Application: Unused
uSocket: 11

Application: TBE

Port 2 (C2P2)

Port 1 (C1P1)Port 2 (C1P2)

Port 1 (C4P1)Port 2 (C4P2)

Port 1 (C3P1)Port 2 (C3P2)

Port 1 (C2P1)

Card 1

Card 2

Card 4

Card 3

Subsystem1: _____________________________

IRQ: 9

Subsystem2: _____________________________

Subsystem3: _____________________________

Subsystem4: _____________________________

Subsystem5: _____________________________

uSocket: 5
IRQ: 11

Subsystem6: _____________________________

Application: Subsystem5

IRQ: 9
uSocket: 7
Application: Subsystem3

Figure 1.1: The CAN 
ards in the test bed 
omputer, as seen from the rear of the
omputer.The TBC is a 2.4 GHz Pentium 4 PC running Mandrake Linux 9.2. The �rst thing to do whenoperating the TBC is to log on. The user name and password is:
User name: root

Password: testbedWhen logged in, the next step is to start the graphi
al environment XFree86. This is done byissuing a startx 
ommand in the shell following the login prompt. 3



1.1 Test Bed Login Test Bed EngineThe startx 
ommand starts the Windowmaker window manager on top of XFree86. Thedesktop of Windowmaker is shown in �gure 1.2.

Figure 1.2: The desktop of the TBC.The desktop i
ons related to the test bed, are the three i
ons lo
ated in the bottom of the rightside of the s
reen. These three i
ons starts the TBE, the CAN monitor, and the web interfa
e,as des
ribed in table 1.1.I
on: Command: Des
ription:
testbed Start Test Bed Engine
testbedgui Start CAN Monitor Unit
firebird Start Web Interfa
e UnitTable 1.1: The i
ons for 
ontrolling the test bed, and the 
ommands exe
uted.Note that the 
ommand for starting the web interfa
e unit is firebird. This 
ommand startsa browser, be
ause the a
tual web interfa
e unit is started when the Apa
he web-server installedon the TBC is started. This is done automati
ally when the TBC is started.4



Test Bed Engine 1.2 Running TBE1.2 Running TBEBy double 
li
king on the top most i
on, the TBE is started in a terminal. This terminal isshown in �gure 1.3.

Figure 1.3: The TBE terminal.When this s
reen is displayed, the TBE is ready to serve the CAN monitor and the web interfa
e.Before the TBE is started, a number of kernel modules must be loaded. This is done automat-i
ally when starting Windowmaker, but the modules 
an also be managed manually by usingthe following 
ommands:Command: Des
ription:
testbedload Loads the modules and 
reates devi
e �les for CAN 
ards.
testbedunload Unloads the modules.Table 1.2: Commands for managing kernel modules needed by the TBE.From the TBE terminal in �gure 1.3, the TBE 
an be stopped by pressing �q�.1.2.1 Managing CAN CardsA help menu 
an be shown by pressing �h�. The help menu is intended for debug purpose, andshown in �gure 1.4. The 
ontents of this menu makes it possible to perform a
tions dire
tly onthe CAN 
ards.The top most group of keys in the menu are used to sele
t whi
h CAN 
ard the other keygroups operate on. The middle group of keys is labelled �Communi
ation Keys�, and used totransmit random CAN frames. The last group of keys is used to perform administration taskson the CAN 
ards. A te
hni
al des
ription of these tasks 
an be found in the Softing manual.1.3 Subsystem SimulationTo simulate a subsystem in the TBE software, the subsystem 
ode must be implemented in aspe
i�
 C �le. The TBE is lo
ated in /testbed/tbe, and this dire
tory 
ontains a subdire
tory for5



1.3 Subsystem Simulation Test Bed Engine

Figure 1.4: The TBE help s
reen.

Subsystem: File path:Subsystem1 /testbed/tbe/
ard2/port1.
Subsystem2 /testbed/tbe/
ard2/port2.
Subsystem3 /testbed/tbe/
ard3/port1.
Subsystem4 /testbed/tbe/
ard3/port2.
Subsystem5 /testbed/tbe/
ard4/port1.
Subsystem6 /testbed/tbe/
ard4/port2.
Table 1.3: The subsystems and their �le paths.
6



Test Bed Engine 1.3 Subsystem Simulationevery 
ard number. In ea
h of these dire
tories a port1.
 and port2.
 is present. The subsystemsare simulated on 
ard 2, 3, and 4, giving the set of subsystem �les listed in table 1.3.The stru
ture of these �les are all identi
al. Ea
h �le 
ontains two fun
tions and a thread whi
his signalled every time a CAN frame is re
eived. (Note: A subsystem thread is NOT signalledwhen a planned test is running, IF the subsystem is not spe
i�ed as part of the test.) Thefun
tions and the thread is listed in table 1.4 for subsystem 1.Fun
tion/thread: Des
ription:C2P1main(void) Fun
tion for 
reating the thread and 
on�guringthe a

eptan
e �lter of the port.C2P1stop(void) Fun
tion for stopping the thread.*C2P1ThreadFun
tion(void *arg) Thread signalled when in
oming frames are re-
eived.Table 1.4: The fun
tions and thread of a subsystem.The �C2� in the fun
tion names refer to �Card 2� and �P1� refers to �Port 1�.The two fun
tions and the thread of table 1.4 are des
ribed in the following.1.3.1 C2P1Main()This fun
tion is exe
uted when the TBE is started. The fun
tion 
on�gures the a

eptan
emask and a

eptan
e 
ode for the pa
ket �ltering, done by the CAN 
ards. CAN frames withidenti�ers that do not mat
h the bit pattern of the �lter are dis
arded by the CAN 
ards,without notifying the appli
ation or generating interrupt. A �lter 
ontains two registers:A

eptan
e mask: De�nes whi
h bits to 
onsider in the identi�er.A

eptan
e 
ode: De�nes the value of the 
onsidered bits.When setting the �lter, a bit value of �1� in the mask means that the bit is to be 
onsidered,and a �0� means that the bit is a don't 
are. A �1� in the a

eptan
e 
ode means that IF this bitis to be 
onsidered (i.e. it is set in the a

eptan
e mask), then the 
orresponding identi�er bitmust have a value of �1� to be a

epted. For an a

eptan
e 
ode bit value of �0� the identi�erbit has to be �0� as well, taken that the same bit is �1� in the a

eptan
e mask.Sin
e the test bed 
an operate on both standard and extended identi�ers, two versions of the�lter registers exist. The sour
e 
ode of C2P1Main() is shown below:
int C2P1main(void)
{

int CardNr = 2;
/* Acceptance filter Port 1 */
CardSettings[CardNr].ACCEPT_MASK_1 = 0x0000;
CardSettings[CardNr].ACCEPT_CODE_1 = 0x0000;
CardSettings[CardNr].ACCEPT_MASK_XTD_1 = 0x00000000L;
CardSettings[CardNr].ACCEPT_CODE_XTD_1 = 0x00000000L;

pthread_create(&C2P1Thread,NULL,(*C2P1ThreadFunction),NULL);
return 0;

} 7



1.3 Subsystem Simulation Test Bed EngineNote that the C2P1Main() only 
on�gures the a

eptan
e �lters in the C data stru
tureCardSettings[℄. The a
tual a

eptan
e �lter 
on�guration is done by the routine that initialisesthe CAN 
ards. This routine reads the data stru
ture and stores the settings in the appropriateregister on the CAN 
ard. This implies that any 
hange of �lter settings done after initialisationis not a
tivated.After storing the �lter settings, the C2P1Main() 
reates a pthread for the routine for re
eivingCAN frames.1.3.2 C2P1Stop()The C2P1Stop() fun
tion does not do anything, ex
ept destroying the thread 
reated by
C2P1Main(). C2P1Stop() is 
alled when the TBE is stopped, and the sour
e 
ode isshown below.

int C2P1stop(void)
{

pthread_cancel(C2P1Thread);
return 0;

}1.3.3 C2P1ThreadFun
tion()The C2P1ThreadFunction() is 
reated by C2P1Main(), and is a thread that is invokedby a signal, every time a CAN frame that mat
hes the a

eptan
e �lter is re
eived on the port.The sour
e 
ode of the fun
tion is shown below.
void *C2P1ThreadFunction(void *arg)
{

CanInFrame thisframe;
CanOutFrame outframe;
int CardNr;
int portNr;
portNr = 1;
CardNr = 2;
while(1)

{
pthread_cond_wait(&C2P1Cond,&C2P1Lock);

while(!empty(&portQueue1[CardNr]))
{
LockQueue("P1Queue",CardNr); /* Lock the Queue */
thisframe = dequeue(&portQueue1[CardNr]); /* Dequeue data from PortQueue1 */
UnlockQueue("P1Queue",CardNr); /* Unlock the Queue */

/* **************************************************************************** *
* SUBSYSTEM SIMULATION CODE BELOW
* EXAMPLE SUBSYSTEM:
* If Identifier 200 is received, identifier 300 is replied with data...
* **************************************************************************** */

if(thisframe.Ident == 200)
{

outframe.Ident = 300; /* Set outgoing identifier */
outframe.XMT_data[0] = 0x02; /* Outgoing B0 */
outframe.XMT_data[1] = 0x01; /* Outgoing B1 */
outframe.XMT_data[2] = 0x0;
outframe.XMT_data[3] = 0x0;
outframe.XMT_data[4] = 0x0;
outframe.XMT_data[5] = 0x0;
outframe.XMT_data[6] = 0x0;
outframe.XMT_data[7] = 0x0;
outframe.DataLength = 8; /* Set outgoing data length */
outframe.Xtd = 1; /* Send as extended frame */
outframe.Rtr = 0; /* Send as data frame */
sendFrame(outframe,portNr,CardNr);

}
}

}
}8



Test Bed Engine 1.4 Data Stru
turesWhen the thread is 
reated, the fun
tion exe
utes into the while(1) loop and stops at the
pthread_cond_wait 
all. This is the re
eption point where the signal of in
oming framesis re
eived. In this example, the fun
tion operates with one instan
e of the two data stru
tures
CanInFrame and CanOutFrame. These data stru
tures are used for in
oming and outgoingCAN frames respe
tively. The 
ontents of these stru
tures is des
ribed in se
tion 1.4.When the C2P1ThreadFunction() re
eives a signal, the exe
ution 
ontinues. First thequeue, from whi
h in
oming frames are re
eived, is lo
ked. Then the data is taken from thequeue and stored in a lo
al instan
e of the CanInFrame stru
ture. The queue is then unlo
kedagain.The next thing to be pro
essed is the a
tual subsystem simulation 
ode. In this example, it is
he
ked if the re
eived frame has an identi�er of 200, and if that is the 
ase, a reply with identi-�er 300 is sent. The fun
tion used for sending is sendFrame(outframe,portNr,CardNr).When the sour
e 
ode of a subsystem is altered, the TBE needs to be re
ompiled and restartedfor the 
hanges to take e�e
t. This is done by issuing the make 
ommand in the /testbed/tbedire
tory.This 
ommand 
ompiles ea
h subsystem, the TBE, and a CAN 
ard library separately, and linksthe o-�les together to a single exe
utable. This exe
utable is linked symboli
 to the 
ommand
testbed, whi
h is used to start the TBE.1.4 Data Stru
turesThe data stru
tures needed when programming subsystem simulation are CanInFrame and
CanOutFrame. These stru
tures are shown in table 1.5 and 1.6.Name: Type: Size: Des
ription:
Ident Unsigned long 4 bytes CAN identi�er.
DataLength Integer 4 bytes Length of data.
RCV_data[8] Unsigned 
har 8 · 1 byte Data bytes re
eived.
UnixTime Unsigned long long 8 bytes Time stamp with resolution of 1 µs.
frameType Integer 4 bytes The frame type.Table 1.5: Parameters in the data stru
ture for in
oming CAN frames.A des
ription of the possible frame types is given in the Softing manual, in table 4-8.1.5 Error HandlingThe TBE has extensive error handling in
luded. When errors o

ur, the return value of erroneousfun
tions is evaluated against prede�ned 
onditions, and an error handling routine determineswhether the TBE should be shut down or 
ontinue operation. In both 
ases the 
ause of theerror is written to a log �le testbed.log, pla
ed in /testbed. 9



Name: Type: Size: Des
ription:
Ident Unsigned long 4 bytes CAN identi�er.
DataLenght Integer 4 bytes Length of data.
XMT_data[8] Unsigned 
har 8 · 1 byte Data bytes to be sent.
Xtd Integer 4 bytes Extended �ag: 1 = Ext. identi�er.0 = Std. identi�er.
Rtr Integer 4 bytes Remote �ag: 1 = Remote frame.0 = Data frame.Table 1.6: Parameters in the data stru
ture for outgoing CAN frames.



Web Interfa
e Unit Chapter2The web interfa
e unit of the test bed is used to type in planned tests, run the tests, analysethe test results, and present the result for the user. It is split up into four parts, namely CANidenti�ers, test 
ase sets, tests, and test reports. The parts have their own link from the menuon the web-page, as seen on �gure 2.1.

Figure 2.1: S
reen-shot of the �rst page of the web interfa
e unit.The parts are pla
ed 
hronologi
ally in the order they must be used. The �rst thing to do, isto type in the CAN identi�ers to be used in a test. The next thing to do is to spe
ify the test
ase sets to be used in the test. After that, the test is spe
i�ed by a number of user inputs,and a number of test 
ase sets. One test 
an have one or more test 
ase sets.When the test is run, a test report is automati
ally generated, and the result is presented forthe user. The CAN identi�ers, test 
ase sets, tests, and test reports are all stored in a MySQLdatabase for further use and/or modi�
ation.2.1 CAN Identi�ersWhen �CAN identi�ers� is 
hosen from the main menu, an overview of all the CAN identi�ersis shown. It is possible to order the CAN identi�ers by one of the headings. This is done by11



2.2 Test Case Sets Web Interfa
e Unit
li
king the heading. Ea
h CAN identi�er is edit-able by 
li
king it. An identi�er 
an also bedeleted. If a CAN identi�er is deleted, be sure that it is not used in another test. If a newCAN identi�er is needed, press the �Create new CAN identi�er� link, and the s
reen shown in�gure 2.2 appears.

Figure 2.2: S
reen-shot of the user interfa
e to type in CAN identi�ers.A CAN identi�er is given by a name, the identi�er (given in de
imal format) and the AAUuser-name of the author.Sin
e the 
ommuni
ation on-board AAUSAT-II is only CAN frames with extended identi�ers,only extended identi�ers 
an be sent by the web interfa
e unit of the testbed.2.2 Test Case SetsThe test 
ase sets 
ontains the CAN identi�ers and the data to be sent on the CAN bus, andthe CAN identi�ers and data expe
ted to appear on the CAN bus during the test.When �Test Case Set� is sele
ted from the main menu, an overview of the test 
ase sets isshown. From here it is possible to order the test 
ase sets, delete, view/edit, and 
reate a newtest 
ase set.By 
li
king the �Create new test 
ase set� link, a s
reen as �gure 2.3 appear. Here the usermust de
ide whether a single frame test 
ase set or an interval test 
ase set is needed. Thesingle frame test sends one frame to the CAN bus, and the interval test sends a number offrames to the CAN bus. For the single frame test, the number of expe
ted outputs must begiven by the user, and for the interval test, the number of intervals must be given.Figure 2.4 shows the user interfa
e of typing in a single frame test 
ase set, where the numberof expe
ted outputs is 
hosen to be four. The interfa
e is split into three groups. The top mostgroup 
ontains the name, a textual des
ription of the test 
ase set, and the AAU user nameof the author. In the middle group the input CAN bus frame must be typed in, and in thebottom group, the expe
ted output must be typed in. If many expe
ted outputs have similardata values, and/or CAN identi�ers, the 
opy line 
an be very useful. The values given in the12



Web Interfa
e Unit 2.3 Tests

Figure 2.3: S
reen-shot of the user interfa
e to type in a new test 
ase set.
opy line 
an be 
opied to all �elds below by the �Set� button below ea
h 
opy �eld. If all 
opy�elds must be 
opied to the �elds below, use the �Set all� button.Figure 2.5 shows the user interfa
e of typing in an interval test 
ase set, where the number ofintervals is 
hosen to be two. This interfa
e is split into four groups. The top most group isidenti
al to the single frame test 
ase set. The next group 
ontains a �gure to illustrate theborders and test 
ases to be sent on the CAN bus. The border numbers are shown in top ofthe �gure, and the test 
ase numbers are shown in the bottom of the �gure.The next group 
ontains the �elds to de�ne the CAN bus input frames. It is done by giving theintervals of the data �elds by typing in the borders. The testbed 
al
ulates the test 
ases to besent. The bottom group 
ontains the expe
ted outputs on the CAN bus. The test 
ases in theend of the intervals maybe does not expe
t a reply. If this is the 
ase, the radio-buttons mustbe set to don't 
are for these test 
ases. The frames are still be sent to the CAN bus to seewhat happens when a subsystem re
eives invalid data.As in the single frame test, a 
opy line 
an be used to ease the �lling of the forms.2.3 TestsThe test part 
ontains the test settings for the test to be performed.When �Test� is sele
ted from the main menu, an overview of the tests is shown. From here itis possible to order the tests, delete, view/edit, and 
reate a new test.By 
li
king the �Create new test� button, a s
reen as �gure 2.6 appears. A name and a des
rip-tion must be given to the test, as well as the AAU user name of the test author. The intervaltime of sending the frames must be given in millise
onds between 1 ms and 10,000 ms, andwhether the frames must be sent in random or sequential order must be 
hosen. 13



2.3 Tests Web Interfa
e Unit

Figure 2.4: S
reen-shot of the user interfa
e for typing in a single frame test 
ase set.

14



Web Interfa
e Unit 2.3 Tests

Figure 2.5: S
reen-shot of the user interfa
e for typing in an interval test 
ase set.The subsystems 
an be simulated by using the testbed subsystem drivers. How a subsystem
an be simulated 
an be seen in the testbed engine part of the user manual. The simulatedsubsystems 
an be a
tivated/dea
tivated by the web user interfa
e.On the right a list of all the test 
ase sets is shown. The test 
ase sets to be in
luded in thetest must be sele
ted. It is not possible to start a test without sele
ting at least one test 
aseset.The test is started by the pressing the �Create and run test� or �Modify and run test� button.When the button is pressed, the �le /testbed/id/test.id is generated. It 
ontains the id of thetest to be run. The testbed engine is polling this �le, and it starts the test when the �le exists.If the �le exists, the �run� button in the web user interfa
e will not be present, and a new test
annot be started. The �le is deleted by the test bed engine when the test �nishes.In 
ase of 
omputer break down or shut down while running a test, the �le might not be deleted,and it is therefore not possible to start a new test. Then the �le must be deleted manually.15



2.4 Test Reports Web Interfa
e Unit

Figure 2.6: S
reen-shot of the user interfa
e for typing in a new test.(Type: rm -f /testbed/id/test.id in a terminal.) If the TBE is shut down manually, the �le isremoved by the TBE.When a test is started, a status bar is presented for the user on the web interfa
e. The pre
isedate and time for the test �nish is shown, and a 
ounter is 
ounting down the se
onds. It isshown in �gure 2.7.2.4 Test ReportsThe test report part 
ontains the automati
 generated test reports. A test report is generatedwhen a test �nishes. The testbed engine uploads the time stamps for the frames sent to theCAN bus to the database, along with all the tra�
 on the CAN bus. The web interfa
e unit
ompares the expe
ted frames with the a
tual frames, and presents the result for the user.When �Test reports� is sele
ted from the main menu, an overview of the tests reports is shown.From here it is possible to order the test reports, delete, and view a test report.A test report is split into four parts, as seen on �gure 2.8. The top part shows the settings16



Web Interfa
e Unit 2.4 Test Reports

Figure 2.7: S
reen-shot of the test bed web user interfa
e status bar.of the test. The next part shows the expe
ted frames and the frame sending time stamps. Italso shows whether the expe
ted frames appeared on the CAN bus during the test. A red 
rossindi
ates that the expe
ted frame did not appear, and a green 
he
k-mark indi
ates that theframes appeared. If the frame appeared, the frame number of the frame that has validated theexpe
ted frame is shown next to the 
he
k-mark.The next part 
ontains all the CAN bus tra�
 during the test. The frames that has beenused to validate expe
ted frames are shown in bold text. In the bottom two .
sv �les 
an bedownloaded. One 
ontains the expe
ted frames, and one 
ontains the CAN bus tra�
. The two�les are generated every time the report is shown, if they does not exist already.

17



2.4 Test Reports Web Interfa
e Unit

Figure 2.8: S
reen-shot of a test report.

18



CAN Monitor Unit Chapter3The CAN monitor unit is split into two se
tions, namely a se
tion whi
h 
an send CAN frames,and a se
tion whi
h 
an 
apture CAN frames from the CAN bus.The Test Bed CAN Monitor (CMU) is shown in �gure 3.1 and the fun
tionality is des
ribed inthe following.

Figure 3.1: The Test Bed CAN Monitor.
3.1 CAN ComposerThe top part of the CMU, is for 
omposing and transmitting CAN frames to the CAN bus.The CMU 
an send standard, extended, and remote CAN frames. These options are sele
tedfrom radio buttons and drop down menus. Figure 3.2 shows the options for transmitting aframe.The identi�er must be typed in as de
imal numbers. If standard frame is sele
ted, the identi�errange is between 0-2047, and extended is 0-536870912. The B0 INSANE �eld is typed in ashexade
imal from 0-FF. The B1-B7 data �eld is typed in as hexade
imal in the range from 0-FFFFFF FFFF FFFF. The frame 
an also be transmitted as a remote frame. Then the B0 and19



3.2 CAN Viewer CAN Monitor Unit
Figure 3.2: Composing and transmitting a frame.B1-B7 does not have any e�e
t. Press the green Send Frame button for sending the 
omposedframe.The frame 
an be sent from any of the 8 CAN ports on the Test Bed, this is shown in �gure 3.3.

Figure 3.3: CAN port sele
tion.If in
orre
t data is typed in, the frame 
an not be sent. A message on the s
reen displays whatis wrong. The last error message is displayed in the output window, shown in �gure 3.4. Alsofeedba
k information about sent CAN frames is displayed in the output window.
Figure 3.4: Feedba
k message.

3.2 CAN ViewerThe bottom part of �gure 3.1 is used for 
apturing CAN frames from the CAN bus. Every
aptured frame is shown in a table, as illustrated in �gure 3.5 The frame parameters providedin the table are the time of the 
aptured frames (in ms sin
e January 1, 1970), identi�er, frametype, INSANE B0, data B1-B7, and data length.In order to be able to 
apture CAN frames, the orange 
apture button has to be enabled. Tostop the 
apturing of CAN frames, press the 
apture button again. This will disable the CANbus 
apture. The 
apturing button is shown in �gure 3.6The table 
an be 
leaned by pressing the 
lean button. The 
apture button has to be disabled.20



CAN Monitor Unit 3.2 CAN Viewer

Figure 3.5: The table to present the 
aptured frames.

Figure 3.6: Capture and 
leaning frames to the CAN table.To store 
aptured CAN frames, disable the 
apture button and push the save button. A �lehandling window will appear, where the �lename of the �le, with the .
sv �le extension, mustbe typed in.To load 
aptured CAN frames, the 
apture button has to be disabled. Press the load buttonand sele
t the desired .
sv �le and press load.The �le handling buttons are shown in �gure 3.7.
Figure 3.7: Buttons for �le handling.To 
hange between the data format of the CAN frames, press the 
onverting radio buttons,for the desired format. This only a�e
ts new 
aptured frames. The buttons for 
hanging dataformat is shown in �gure 3.8If too many error frames are transmitted on the CAN bus, the CAN ports on the CAN 
ards gointo bus o� mode. This means that the ports are not able to re
eive any further CAN frames.21



3.2 CAN Viewer CAN Monitor Unit

Figure 3.8: Changing data format for new 
aptured frames.The status of ea
h port is indi
ated by a 
oloured 
ir
le, as shown in �gure 3.9.
Figure 3.9: Status of the CAN 
ard ports.A green 
ir
le means that the given port is OK. A red 
ir
le means that the port is in bus o�mode, and a yellow 
ir
le means that the port is in error passive mode.When a port has entered bus o� mode (red 
ir
le), the given 
an 
ard 
an be reset by pressingthe reset button. If more than one 
ard is going to be reset, the �Reset all 
ards� button 
anbe used. Only CAN 
ards in bus o� mode are a�e
ted of the reset button.After a reset is 
arried out, a frame on the CAN bus is transmitted to 
on�rm the reset.The CAN frame 
ontains a standard frame with identi�er 2047, B0 = FF and B1-B7 =FFFFFFFFFFFFFF.Buttons, where a letter in the button label is underlined, 
an be a
tivated by keypad short
uts,by pressing ALT + the underlined 
har.

22


