Contents

1 Test Bed Engine
1.1 Test Bed Login
1.2 Running TBE
1.3 Subsystem Simulation
1.4 Data Structures e
1.5 Error Handling

2 Web Interface Unit
2.1 CAN Identifiers
22 Test Case Sets
2.3 Testso
2.4 Test Reports L

3 CAN Monitor Unit
3.1 CAN Composer e
3.2 CAN Viewer o e

11
11
12
13
16

Test Bed Engine

CHAPTER 1

1.1 Test Bed Login

The Test Bed Engine (TBE) must be started before structured tests can be performed, or the

CAN monitor can be used.

Figure 1.1 shows an overview of the CAN cards installed in the test bed computer (TBC). The
bottom part of the figure contains a list of which satellite subsystems are simulated on what

CAN port. The users must fill in the name of the subsystems belonging to each port.

n

| Application: Subsystem6é ! Port 2 (C4P2) Port 1 (C4P1) =
!'uSocket: 5 I Card 4

ol (@] o (e}
i IRQ: 11 i
7777777777777777777 |
| Application: Subsystem4 ! Port 2 (C3P2) Port 1 (C3P1) |=:
! uSocket: 7 I Card 3
i IRQ: 9 i OO OO
************** | |
| Application: Subsystem2 ! Port 2 (C2P2) Port 1 (C2P1) [
! uSocket: 9 I Card 2
'IRQ: 9 | cweeslo o
7777777777777777777 I
P T ! |
, Application: Unused Port 2 (C1P2) Port 1 (C1P1) |mn

1 IRQ: 4

|
i uSocket: 11 i
|
|

Subsystem1:
Subsystem2:
Subsystem3:
Subsystem4:
Subsystem5:

Subsystem6:

,,,,,,,,,,,,,,,,,,,

| Application: Subsystem5 |
' uSocket: 5 !
'IRQ: 11 !

,,,,,,,,,,,,,,,,,,,

| Application: Subsystem3 |
! uSocket: 7 !
'IRQ: 9 !

| Application: Subsystem1 !
1 uSocket: 9 !
! IRQ: 9 !

| Application: TBE !
! uSocket: 11 !
1IRQ: 4 !

Figure 1.1: The CAN cards in the test bed computer, as seen from the rear of the

computer.

The TBC is a 2.4 GHz Pentium 4 PC running Mandrake Linux 9.2. The first thing to do when

operating the TBC is to log on. The user name and password is:

r oot
t est bed

User nane:
Passwor d:

When logged in, the next step is to start the graphical environment XFree86. This is done by

issuing a st art X command in the shell following the login prompt.

1.1 Test Bed Login Test Bed Engine

The startx command starts the Windowmaker window manager on top of XFree86. The
desktop of Windowmaker is shown in figure 1.2.

Figure 1.2: The desktop of the TBC.

The desktop icons related to the test bed, are the three icons located in the bottom of the right
side of the screen. These three icons starts the TBE, the CAN monitor, and the web interface,

as described in table 1.1.

Icon: Command: Description:

E t est bed Start Test Bed Engine

t est bedgui Start CAN Monitor Unit

@ firebird Start Web Interface Unit

Table 1.1: The icons for controlling the test bed, and the commands executed.

Note that the command for starting the web interface unit is f i r ebi r d. This command starts
a browser, because the actual web interface unit is started when the Apache web-server installed
on the TBC is started. This is done automatically when the TBC is started.

4

Test Bed Engine 1.2 Running TBE

1.2 Running TBE

By double clicking on the top most icon, the TBE is started in a terminal. This terminal is
shown in figure 1.3.

| engine X

Test Bed Engine running...

* Active Card Threads:
* Card nr: P1 Pz

* Card 1: On On
* Card Z: on Oon
* Card 3: on On

*
*
*
*
*
* Card 4: Oon On *

Eress "g" to guit, "h" for help...

Figure 1.3: The TBE terminal.

When this screen is displayed, the TBE is ready to serve the CAN monitor and the web interface.

Before the TBE is started, a number of kernel modules must be loaded. This is done automat-
ically when starting Windowmaker, but the modules can also be managed manually by using
the following commands:

Command: Description:
t est bedl oad Loads the modules and creates device files for CAN cards.
t est bedunl oad Unloads the modules.

Table 1.2: Commands for managing kernel modules needed by the TBE.

From the TBE terminal in figure 1.3, the TBE can be stopped by pressing “q”.

1.2.1 Managing CAN Cards

A help menu can be shown by pressing “h”. The help menu is intended for debug purpose, and
shown in figure 1.4. The contents of this menu makes it possible to perform actions directly on
the CAN cards.

The top most group of keys in the menu are used to select which CAN card the other key
groups operate on. The middle group of keys is labelled “Communication Keys”, and used to
transmit random CAN frames. The last group of keys is used to perform administration tasks
on the CAN cards. A technical description of these tasks can be found in the Softing manual.

1.3 Subsystem Simulation

To simulate a subsystem in the TBE software, the subsystem code must be implemented in a
specific C file. The TBE is located in /testbed/tbe, and this directory contains a subdirectory for

5

1.3 Subsystem Simulation

Test Bed Engine

O engine

CARD SELECTION KEYS (Card 1)

¢ Switch to card 1 2: Switch to card 2
¢ Switch to card 3 4: Switch to card 4

COMMUNICATION KEYS (Card 1)

CAN 1 CANZ
: transmit data canl z: transmit data canZ
i transmit remote canl f: transmit remote canZ

p: toggle identifier type standard/extended

ADMIMISTRATION KEYS (Card 1)

:oget time k: reset fifos
: get fifo lewels L: reset lost msg counter
E: get bus state canl N: get bus state canZ
: help menu d: disable/enable CANPC_read()

: clear screen g: guit

Figure 1.4: The TBE help screen.

Subsystem: File path:

Subsysteml /testbed/tbe/card2/portl.c
Subsystem2 /testbed/tbe/card2/port2.c
Subsystem3 /testbed/tbe/card3/portl.c
Subsystem4 /testbed/tbe/card3/port2.c
Subsystem5 /testbed/tbe/card4/portl.c
Subsystem6 /testbed/tbe/card4/port2.c

Table 1.3: The subsystems and their file paths.

Test Bed Engine 1.3 Subsystem Simulation

every card number. In each of these directories a portl.c and port2.c is present. The subsystems
are simulated on card 2, 3, and 4, giving the set of subsystem files listed in table 1.3.

The structure of these files are all identical. Each file contains two functions and a thread which
is signalled every time a CAN frame is received. (Note: A subsystem thread is NOT signalled
when a planned test is running, IF the subsystem is not specified as part of the test.) The
functions and the thread is listed in table 1.4 for subsystem 1.

Function/thread: Description:

C2P1main(void) Function for creating the thread and configuring
the acceptance filter of the port.

C2P1stop(void) Function for stopping the thread.

*C2P1ThreadFunction(void *arg) Thread signalled when incoming frames are re-
ceived.

Table 1.4: The functions and thread of a subsystem.

The “C2" in the function names refer to “Card 2" and “P1” refers to “Port 1".

The two functions and the thread of table 1.4 are described in the following.

1.3.1 C2P1Main()

This function is executed when the TBE is started. The function configures the acceptance
mask and acceptance code for the packet filtering, done by the CAN cards. CAN frames with
identifiers that do not match the bit pattern of the filter are discarded by the CAN cards,
without notifying the application or generating interrupt. A filter contains two registers:

Acceptance mask: Defines which bits to consider in the identifier.
Acceptance code: Defines the value of the considered bits.

When setting the filter, a bit value of “1” in the mask means that the bit is to be considered,
and a “0" means that the bit is a don't care. A “1" in the acceptance code means that IF this bit
is to be considered (i.e. it is set in the acceptance mask), then the corresponding identifier bit
must have a value of “1” to be accepted. For an acceptance code bit value of “0"” the identifier
bit has to be “0"” as well, taken that the same bit is “1” in the acceptance mask.

Since the test bed can operate on both standard and extended identifiers, two versions of the
filter registers exist. The source code of C2P1Mai n() is shown below:

int C2P1lnai n(voi d)
{
int CardNr = 2;
/* Acceptance filter Port 1 */
CardSettings[Car dNr] . ACCEPT_MASK_1 = 0x0000;
Car dSettings[Car dNr] . ACCEPT_CCDE_1 = 0x0000;
Car dSet ti ngs[Car dNr] . ACCEPT_MASK_XTD_1 = 0x00000000L;
Car dSet ti ngs[Car dNr] . ACCEPT_CODE_XTD_1 = 0x00000000L;

pt hread_creat e(&2P1Thr ead, NULL, (* C2P1Thr eadFuncti on), NULL) ;
return O;

1.3 Subsystem Simulation Test Bed Engine

Note that the C2P1Mai n() only configures the acceptance filters in the C data structure
CardSettings[]. The actual acceptance filter configuration is done by the routine that initialises
the CAN cards. This routine reads the data structure and stores the settings in the appropriate
register on the CAN card. This implies that any change of filter settings done after initialisation
is not activated.

After storing the filter settings, the C2ZP1Mai n(\) creates a pthread for the routine for receiving
CAN frames.

1.3.2 C2P1Stop()

The C2P1St op() function does not do anything, except destroying the thread created by
C2P1Mai n() . C2P1St op() is called when the TBE is stopped, and the source code is

shown below.

int C2P1stop(voi d)

pt hread_cancel (C2P1Thr ead) ;
return O;

}

1.3.3 C2P1ThreadFunction()

The C2P1Thr eadFuncti on() is created by C2P1Mai n(), and is a thread that is invoked
by a signal, every time a CAN frame that matches the acceptance filter is received on the port.

The source code of the function is shown below.

voi d *C2P1Thr eadFuncti on(voi d *arg)
{
Canl nFrane thi sframne;
CanCut Frane outfrane;
int CardNr;
int portNr;
portNr = 1;
CardNr = 2;
whi | e(1)

pt hr ead_cond_wai t (& 2P1Cond, &C2P1Lock) ;

whi | e(! enpt y(&port Queuel[CardNr]))
{

LockQueue(" P1Queue", CardNr); /* Lock the Queue */
thisfranme = dequeue(&port Queuel[CardNr]); /* Dequeue data from PortQueuel */
Unl ockQueue(" P1Queue", CardNr) ; /* Unl ock the Queue */

R T T
* SUBSYSTEM S| MULATI ON CODE BELOW

* EXAMPLE SUBSYSTEM

* |f Identifier 200 is received, identifier 300 is replied with data...

*

H KKK KKK KR KKK KA KR A KKK IR KKK IR KKK KA FA KKK I A KKK A KKK KKK KA KRR KRR A & [

if(thisfrane.ldent == 200)

{
outframe. | dent = 300; /* Set outgoing identifier */
out frame. XMI_dat a[0] = 0x02; /* Qutgoing BO */
outframe. XMI_dat a[1] = 0x01; /* Qutgoing Bl */
outframe. XMI_dat a[2] = 0xO;
out frame. XMI_dat a[3] = 0xO;
out frame. XMI_dat a[4] = 0xO;
out frane. XMI_dat a[5] = 0xO0;
out frane. XMI_dat a[6] = 0xO0;
out frane. XMI_data[7] = 0xO0;
out frane. DataLength = 8; /* Set outgoing data | ength */
outfrane. Xtd = 1; /* Send as extended frame */
outframe.Rtr = 0; /* Send as data frane */
sendFrame(out f rame, portNr, CardNr);

Test Bed Engine 1.4 Data Structures

When the thread is created, the function executes into the whi | e(1) loop and stops at the
pt hread_cond_wai t call. This is the reception point where the signal of incoming frames
is received. In this example, the function operates with one instance of the two data structures
Canl nFr ane and CanQut Fr ame. These data structures are used for incoming and outgoing
CAN frames respectively. The contents of these structures is described in section 1.4.

When the C2P1Thr eadFuncti on() receives a signal, the execution continues. First the
queue, from which incoming frames are received, is locked. Then the data is taken from the
queue and stored in a local instance of the Canl nFr anme structure. The queue is then unlocked
again.

The next thing to be processed is the actual subsystem simulation code. In this example, it is
checked if the received frame has an identifier of 200, and if that is the case, a reply with identi-
fier 300 is sent. The function used for sending is sendFr ane(out f r ane, port Nr, Car dNr) .

When the source code of a subsystem is altered, the TBE needs to be recompiled and restarted
for the changes to take effect. This is done by issuing the make command in the /testbed/tbe
directory.

This command compiles each subsystem, the TBE, and a CAN card library separately, and links
the o-files together to a single executable. This executable is linked symbolic to the command
t est bed, which is used to start the TBE.

1.4 Data Structures

The data structures needed when programming subsystem simulation are Canl nFr ane and
CanCut Fr ane. These structures are shown in table 1.5 and 1.6.

Name: Type: Size: Description:

| dent Unsigned long 4 bytes CAN identifier.

Dat aLength Integer 4 bytes Length of data.

RCV_dat a[8] Unsigned char 8 - 1 byte Data bytes received.

Uni xTi me Unsigned long long 8 bytes Time stamp with resolution of 1 us.
frameType Integer 4 bytes The frame type.

Table 1.5: Parameters in the data structure for incoming CAN frames.

A description of the possible frame types is given in the Softing manual, in table 4-8.

1.5 Error Handling

The TBE has extensive error handling included. When errors occur, the return value of erroneous
functions is evaluated against predefined conditions, and an error handling routine determines
whether the TBE should be shut down or continue operation. In both cases the cause of the
error is written to a log file testbed.log, placed in /testbed.

Name: Type: Size: Description:

| dent Unsigned long 4 bytes CAN identifier.

Dat aLenght Integer 4 bytes Length of data.

XMI_dat a[8] Unsigned char 8 -1 byte Data bytes to be sent.

Xtd Integer 4 bytes Extended flag: 1 = Ext. identifier.
0 = Std. identifier.

Rt r Integer 4 bytes Remote flag: 1 = Remote frame.

0 = Data frame.

Table 1.6: Parameters in the data structure for outgoing CAN frames.

Web Interface Unit 2
CHAPTER

The web interface unit of the test bed is used to type in planned tests, run the tests, analyse
the test results, and present the result for the user. It is split up into four parts, namely CAN
identifiers, test case sets, tests, and test reports. The parts have their own link from the menu
on the web-page, as seen on figure 2.1.

AAUSAT-Il Test Bed

ngineering, Db

MAVIGATION == CAM IDENTIFIERS TEST CASESET AR

e AAUSAT-N Test Bed ;..

Figure 2.1: Screen-shot of the first page of the web interface unit.

The parts are placed chronologically in the order they must be used. The first thing to do, is
to type in the CAN identifiers to be used in a test. The next thing to do is to specify the test
case sets to be used in the test. After that, the test is specified by a number of user inputs,
and a number of test case sets. One test can have one or more test case sets.

When the test is run, a test report is automatically generated, and the result is presented for
the user. The CAN identifiers, test case sets, tests, and test reports are all stored in a MySQL
database for further use and/or modification.

2.1 CAN Identifiers

When “CAN identifiers” is chosen from the main menu, an overview of all the CAN identifiers
is shown. It is possible to order the CAN identifiers by one of the headings. This is done by

11

2.2 Test Case Sets Web Interface Unit

clicking the heading. Each CAN identifier is edit-able by clicking it. An identifier can also be
deleted. If a CAN identifier is deleted, be sure that it is not used in another test. If a new
CAN identifier is needed, press the “Create new CAN identifier” link, and the screen shown in
figure 2.2 appears.

AAUSAT-Il Test Bed

Ey group Odgri032a, Aaborg Uni

NAVIGATION == CAN IDENTIFIERS TEST TE

-::..CAN IDENTIFIERS ..::..

New CAN Identifier

GAN identifiet name: |
CAN identifier: (Dec)
AAU user name

Create CAM Identifier Undo

& copyright 2004 group O4gri032a

Figure 2.2: Screen-shot of the user interface to type in CAN identifiers.

A CAN identifier is given by a name, the identifier (given in decimal format) and the AAU
user-name of the author.

Since the communication on-board AAUSAT-II is only CAN frames with extended identifiers,
only extended identifiers can be sent by the web interface unit of the testbed.

2.2 Test Case Sets

The test case sets contains the CAN identifiers and the data to be sent on the CAN bus, and
the CAN identifiers and data expected to appear on the CAN bus during the test.

When “Test Case Set” is selected from the main menu, an overview of the test case sets is
shown. From here it is possible to order the test case sets, delete, view/edit, and create a new
test case set.

By clicking the “Create new test case set” link, a screen as figure 2.3 appear. Here the user
must decide whether a single frame test case set or an interval test case set is needed. The
single frame test sends one frame to the CAN bus, and the interval test sends a number of
frames to the CAN bus. For the single frame test, the number of expected outputs must be
given by the user, and for the interval test, the number of intervals must be given.

Figure 2.4 shows the user interface of typing in a single frame test case set, where the number
of expected outputs is chosen to be four. The interface is split into three groups. The top most
group contains the name, a textual description of the test case set, and the AAU user name
of the author. In the middle group the input CAN bus frame must be typed in, and in the
bottom group, the expected output must be typed in. If many expected outputs have similar
data values, and/or CAN identifiers, the copy line can be very useful. The values given in the

12

Web Interface Unit 2.3 Tests

AAUSAT-Il Test Bed

ntral Enginesring, Distrbuted Systers

MAVIGATION == CAN IDEMTIFIERS TEST CASE SET =1 il TS ABOUT

.11 TESTCASE SET ..::..

New Test Case Set

Test case set name

Short description

AAU user name

Type of test case: Single frame: ¢ Intenal: &

Nurrber of interals: o

Continue Start over

ht 2004 group O4gridaza

Figure 2.3: Screen-shot of the user interface to type in a new test case set.

copy line can be copied to all fields below by the “Set” button below each copy field. If all copy
fields must be copied to the fields below, use the “Set all” button.

Figure 2.5 shows the user interface of typing in an interval test case set, where the number of
intervals is chosen to be two. This interface is split into four groups. The top most group is
identical to the single frame test case set. The next group contains a figure to illustrate the
borders and test cases to be sent on the CAN bus. The border numbers are shown in top of
the figure, and the test case numbers are shown in the bottom of the figure.

The next group contains the fields to define the CAN bus input frames. It is done by giving the
intervals of the data fields by typing in the borders. The testbed calculates the test cases to be
sent. The bottom group contains the expected outputs on the CAN bus. The test cases in the
end of the intervals maybe does not expect a reply. If this is the case, the radio-buttons must
be set to don’t care for these test cases. The frames are still be sent to the CAN bus to see
what happens when a subsystem receives invalid data.

As in the single frame test, a copy line can be used to ease the filling of the forms.

2.3 Tests

The test part contains the test settings for the test to be performed.

When “Test” is selected from the main menu, an overview of the tests is shown. From here it
is possible to order the tests, delete, view/edit, and create a new test.

By clicking the “Create new test” button, a screen as figure 2.6 appears. A name and a descrip-
tion must be given to the test, as well as the AAU user name of the test author. The interval
time of sending the frames must be given in milliseconds between 1 ms and 10,000 ms, and
whether the frames must be sent in random or sequential order must be chosen.

13

2.3 Tests

Web Interface Unit

AAUSAT-Il Test Bed

DAN IDENTIFIERS

3%a, Aaborg Un

Enginearing, Distrbut

ABOUT

wiin TEST CASE SET i,

New Test Case Set

Test case set name:

Short description:

AAL user narme:

Inpwt data

Input Identifier: Input frame:

Choose identifier =| BO: (HEX) B1-B7: (HEX)

Expected Output Data

Test Case: Qutput Identifier: (HEX) (HEX)

Copy line: Choose identifier |
Setall Set

1: Choose identifisr =
2 Choose identifier =
3: Choose identifier =
4 Choose identifier |

Create Test Case S=t Sfartover

=1} Start B1-B7:

End B1-B7:
HEX)

Figure 2.4: Screen-shot of the user interface for typing in a single frame test case set.

14

Web Interface Unit 2.3 Tests

2 intervals gives 3 borders and 11 fest cases:
Graphic
1 2 3
lil L] lil " ltl
(i3] 2]
oo @ x G
oW
haput data
CAN Identifier: Choose identifisr =i
BO: (HEX)
Border 1: (HEX)
Border 2: (HEX)
Border 3: (HEX)
Expected Output Data
Firstiest case: Don'tcare: € Expected interval: &
Lastlest case: Don'tcare: £ Expected intzral: &
Wz
& BO Start B1 -B7: Encl B1-B7:
Test Caze: Qutput ldentifier: Tirne:
L (HEX) (HEX) {HEX) o
Copy line Chicose identifisr x|
Setall et Set Set = et
4 Chioose identifisr x|
2 Choose idenifier =i
4.8 Choose identifisr =i
&: I Choose identifier =
8.8 Choose 'ld"e‘l‘l]lfl_Er j
10 Choose identifisr =i
11 | Choose identiier |
Creats Test Case Set Sartover

Figure 2.5: Screen-shot of the user interface for typing in an interval test case set.

The subsystems can be simulated by using the testbed subsystem drivers. How a subsystem
can be simulated can be seen in the testbed engine part of the user manual. The simulated
subsystems can be activated/deactivated by the web user interface.

On the right a list of all the test case sets is shown. The test case sets to be included in the
test must be selected. It is not possible to start a test without selecting at least one test case
set.

The test is started by the pressing the “Create and run test” or “Modify and run test” button.
When the button is pressed, the file /testbed/id/test.id is generated. It contains the id of the
test to be run. The testbed engine is polling this file, and it starts the test when the file exists.
If the file exists, the “run” button in the web user interface will not be present, and a new test
cannot be started. The file is deleted by the test bed engine when the test finishes.

In case of computer break down or shut down while running a test, the file might not be deleted,
and it is therefore not possible to start a new test. Then the file must be deleted manually.

15

2.4 Test Reports Web Interface Unit

AAUSAT-Il Test Bed

By group D4gr1032a, Aaborg Ln ol Enginesring, Distb

A IGATICN = CAN IDENTIFIERS TEST CASE SET TEST TEST REFORTS AEX
:.. TEST
New Test Test Case Sets

Test name: [Testecase 1
Short description: W e
[~ Testcase 3
AAL user name: [T Testoase 4
Intzral frarme time: 200 ms [Testcase s
Frame arder: Sequential: & Random: ¢ [T Testcasesg
Subsystems: [~ Subsystern 1 [T Testcase7
[Subsystem 2 [Testcase8
[Subsystern [Testcase®

[~ Subsystern4 [T Testcase 10

[Subsystern 5 [T Testcase 11

[Subsystem@ [Testcase 12

[T Testcase 13

[T Testcase 14

[T Testcase 15

[Testcase 16

[T Testcase 17

[T Testcase 20

Create test Undo

Create and run test

Figure 2.6: Screen-shot of the user interface for typing in a new test.

(Type: rm -f /testbed/id/test.id in a terminal.) If the TBE is shut down manually, the file is
removed by the TBE.

When a test is started, a status bar is presented for the user on the web interface. The precise
date and time for the test finish is shown, and a counter is counting down the seconds. It is
shown in figure 2.7.

2.4 Test Reports

The test report part contains the automatic generated test reports. A test report is generated
when a test finishes. The testbed engine uploads the time stamps for the frames sent to the
CAN bus to the database, along with all the traffic on the CAN bus. The web interface unit
compares the expected frames with the actual frames, and presents the result for the user.

When “Test reports” is selected from the main menu, an overview of the tests reports is shown.
From here it is possible to order the test reports, delete, and view a test report.

A test report is split into four parts, as seen on figure 2.8. The top part shows the settings

16

Web Interface Unit 2.4 Test Reports

AAUSAT-Il Test Bed

By group D4gr1032a, Aabarg L ntrol Engineering, Distbuted Systems

MNAVIGATION == DAN IDENTIFIERS TEST CASE SET TEST ABOUT

TEST IS RUNNING
Testing tirme: 3 minutes and 33 seconds

Ezconds To Test Finishes: 184 s
Finish date: 10/6-2004 10:21:22

Batus bar
’7

© copyright 2004 group O4griD3ga

Figure 2.7: Screen-shot of the test bed web user interface status bar.

of the test. The next part shows the expected frames and the frame sending time stamps. It
also shows whether the expected frames appeared on the CAN bus during the test. A red cross
indicates that the expected frame did not appear, and a green check-mark indicates that the
frames appeared. If the frame appeared, the frame number of the frame that has validated the
expected frame is shown next to the check-mark.

The next part contains all the CAN bus traffic during the test. The frames that has been
used to validate expected frames are shown in bold text. In the bottom two .csv files can be
downloaded. One contains the expected frames, and one contains the CAN bus traffic. The two
files are generated every time the report is shown, if they does not exist already.

17

2.4 Test Reports

18

AAUSAT-Il Test Bed

, Azbarg Un | Engineering, Distrbu

ABOUT

CAM IDEMTIFIERS

-=:.. TEST REPORTS ..::..

Test repert for "Test 8"

Test report for; Testd Frame intenal: 200 s

Test description: Test of subsystems. Another Frame arder: Sequential
subsystern is enbled and the test is

suceessful if anly one answers Test perormed: 2004-05-2510:29:49
Testauthar: rrpedil Drivets: - Subsystem2
Test case sets: 1
Murrber of frarmes: 2
Test result x
Frames

|—|Inputdata |Expected ocutput data ‘Tlme stamp ‘Hasu\t

CANID Dee) | B2 G- cANId (Dee) | B0 Bl (B E=E Senttime (us) :\uq:‘t G

(HEX) | (HEX) [HEX) | (HEX) HEX) Pl I,

|Tbslcaseset: Testcase &

[1 [s12 [0 o [513 I [o [108s47a7onsesesr [10 [[
|?|512 ’u_‘o [513 ’0_|0 [0 [108547970059 5997 ’TWP—

CAM bus data
2 frames appeared on the CAN bus during the test
Time stamp fus) Frame type CAM Identifier (Dec) B0 (HEX) B1-E7 (HEX)
1 108547 3790595381 10 512 0 0
2 1085473790596835 9 513 (1] 1]

Dovenload csv files

CARN bus data

group 04gri0

Figure 2.8: Screen-shot of a test report.

Web Interface Unit

CAN Monitor Unit —

The CAN monitor unit is split into two sections, namely a section which can send CAN frames,
and a section which can capture CAN frames from the CAN bus.

The Test Bed CAN Monitor (CMU) is shown in figure 3.1 and the functionality is described in
the following.

~CAN Frame Configurator

Advanced Editing -~ Output Message
Ientifisr (Osc) B0 (HEX B1-87 (HEX) Cond Port
B 4 E o ;| Gt | 1 |
o S \Frarna | Reriee Frame
 File Handling Capture Options Converting Options —CAN Card Status
Port 1 “Fort 2
81-B7 as deciml Cord 1
Lo Tl o e - i =
- Frame type as tedt toina e
ol cords
. : : - BO a5 decimal :
Save Table Content: Clear CAN Table cared e
< Ideniier as hesadecimal Card 4
Resst
Time | dentifier Frame Type. [B0 | Bi-87 Data kength |

Figure 3.1: The Test Bed CAN Monitor.

3.1 CAN Composer

The top part of the CMU, is for composing and transmitting CAN frames to the CAN bus.

The CMU can send standard, extended, and remote CAN frames. These options are selected
from radio buttons and drop down menus. Figure 3.2 shows the options for transmitting a
frame.

The identifier must be typed in as decimal numbers. If standard frame is selected, the identifier
range is between 0-2047, and extended is 0-536870912. The B0 INSANE field is typed in as
hexadecimal from 0-FF. The B1-B7 data field is typed in as hexadecimal in the range from 0-FF
FFFF FFFF FFFF. The frame can also be transmitted as a remote frame. Then the B0 and

19

3.2 CAN Viewer CAN Monitor Unit

CAN Frame Configurator

Identifier {Dec) BO (HEX) B1-B7 (HEX)

i | g q b | i

- Standard Frame - Remaote Frame

Figure 3.2: Composing and transmitting a frame.

B1-B7 does not have any effect. Press the green Send Frame button for sending the composed

frame.

The frame can be sent from any of the 8 CAN ports on the Test Bed, this is shown in figure 3.3.

Advanced Editing
Card Port
Card 1 1 Port 1 f

Figure 3.3: CAN port selection.

If incorrect data is typed in, the frame can not be sent. A message on the screen displays what
is wrong. The last error message is displayed in the output window, shown in figure 3.4. Also
feedback information about sent CAN frames is displayed in the output window.

Output Messge

Lest message sent
I 200 BO 0 B187 O Cad 1. Port 1

Figure 3.4: Feedback message.

3.2 CAN Viewer

The bottom part of figure 3.1 is used for capturing CAN frames from the CAN bus. Every
captured frame is shown in a table, as illustrated in figure 3.5 The frame parameters provided
in the table are the time of the captured frames (in ms since January 1, 1970), identifier, frame
type, INSANE BO, data B1-B7, and data length.

In order to be able to capture CAN frames, the orange capture button has to be enabled. To
stop the capturing of CAN frames, press the capture button again. This will disable the CAN
bus capture. The capturing button is shown in figure 3.6

The table can be cleaned by pressing the clean button. The capture button has to be disabled.

20

CAN Monitor Unit 3.2 CAN Viewer

Time et Frame Type 0 b1 |Demetn | A
frame - 2 1oa7ananE0Tareos)| 50 15(00 100 |
ame e 72 1o IaeeTesE | | 18[00 oo 8
e e 34 1o7an0EerIa| | 1500 o0 8
et Toeraoeniaros| 00| B |00 8
e 6 1P| 0| 1500 o0 8
frame 1 37 108720801 00k | ol 15/00 oo 3
e v %0 \CaaEOETERN 05 | o0 500 00 8
] 10e7anone0ies 28| 00/ oloa 0000000000000 B |
[e EeRn g | E| 902 0200000000000 8
il 1oerapeneRET | 50 0o | 0200000000000 8
P 1oa7amanE0TeeR)| 50 9)0u4 | Gx1000000000000 |
frame 1 42 10a7e0E0t ez 20 alod 2000000000000 3 v

Figure 3.5: The table to present the captured frames.

—Capture Options

=S
e

Clear CAM Table

Figure 3.6: Capture and cleaning frames to the CAN table.

To store captured CAN frames, disable the capture button and push the save button. A file
handling window will appear, where the filename of the file, with the .csv file extension, must
be typed in.

To load captured CAN frames, the capture button has to be disabled. Press the load button
and select the desired .csv file and press load.

The file handling buttons are shown in figure 3.7.

— File Handling

Lead Table Content |
Save Table Content |

Figure 3.7: Buttons for file handling.

To change between the data format of the CAN frames, press the converting radio buttons,
for the desired format. This only affects new captured frames. The buttons for changing data
format is shown in figure 3.8

If too many error frames are transmitted on the CAN bus, the CAN ports on the CAN cards go
into bus off mode. This means that the ports are not able to receive any further CAN frames.

21

3.2 CAN Viewer CAN Monitor Unit

— Converting Options

~~ B1-B7 as decimal

+ Frame type as text

~+ BO as decirnal

~r |dentifier as hexadecirnal

Figure 3.8: Changing data format for new captured frames.

The status of each port is indicated by a coloured circle, as shown in figure 3.9.

—CAN Card Status
Port 1 Port 2

Card 1 El

Gl El Resat all cardsl
Card 3 El

Card 4 El

Figure 3.9: Status of the CAN card ports.

A green circle means that the given port is OK. A red circle means that the port is in bus off
mode, and a yellow circle means that the port is in error passive mode.

When a port has entered bus off mode (red circle), the given can card can be reset by pressing
the reset button. If more than one card is going to be reset, the “Reset all cards” button can
be used. Only CAN cards in bus off mode are affected of the reset button.

After a reset is carried out, a frame on the CAN bus is transmitted to confirm the reset.
The CAN frame contains a standard frame with identifier 2047, BO = FF and B1-B7 =
FFFFFFFFFFFFFF.

Buttons, where a letter in the button label is underlined, can be activated by keypad shortcuts,
by pressing ALT + the underlined char.

22

