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ABOUT THIS REPORT

Disposition of the Report

The report is divided into four major parts, which are:

1. Analysis and Requirements.

2. Development of the Simulation Platform.

3. Simulation and Analysis of Graphs.

4. Large-Scale use of the Simulation Platform.
The contents of each part will be summarized briefly in the following para-
graphs. Also, the report contains a number of appendixes, which are used to

document details, which are not relevant for the main report, e.g. use cases
used in the object oriented analysis and design.

Analysis and Requirements

The Analysis and Requirements part begins with a short description of differ-
ent network performance parameters. Furthermore, a perfect simulation plat-
form is described. Then the requirements specification is situated in order to
introduce the specific requirements and limitations to the simulation platform.

Development of the Simulation Platform
The development of the simulation platform begins with two chapters, that
provides an object oriented analysis and object oriented design respectively.
Hereafter, the simulation platform is implemented. Furthermore, this part ends
with a performance test versus acceptance test.

Simulation and Analysis of Graphs

This part first describes different large-scale network structures. Afterwards,
the network structures will be simulated by using the simulation platform.

Large-Scale use of the Simulation Platform

The final part describes a simulation of different network configurations con-
taining 1500 nodes using the platform. The part ends with a chapter in which
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the simulator platform’s limitations are described. Furthermore, the uses of
Linux clustering for large-scale network simulations are discussed.

Typographic Aids
The report is written in TEX and the figures are made in XFIG.

Bibliographic references are given in square brackets with the name of the
author(s) and the year of publication. An example of a bibliographic reference:
[1]. If no explicit author can be identified, the company or organisation name
is being used instead. Some references may include a specific page number in
the reference, but this principle is not adhered to in general.

References within the report come in two types. If the reference is within
the current chapter, only the section number is being used for reference (e.g.
section 5.2). Otherwise, if the reference is to another chapter of the report, the
reference is given with both section number and page number (e.g. section 5.2
on page 25).

Notes in the report are given in footnotes!. Figures and tables are identified
by the chapter number and an incrementing number within each chapter. The
same numbering scheme is used for equations and formulas, but only important
and/or referenced formulas are numbered. An example:

E =m-c?

Contents of the Enclosed CD-ROM

The CD-ROM enclosed with this report contains all the software and source-
code used in the project.

When the CD is put into a computer with a Windows operating system, a user
interface will appear. From this the contents are found.

IThis is an example of a footnote

(1.1)
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CHAPTER ]_

INTRODUCTION

According to the national statistical information about percentage of people
accessing the Internet in Denmark?!, 72% of the Danish population had access
to the Internet 2 years ago. Today more than 77% of the Danish population
has access to the Internet either from work or at home, and the number is
increasing. A plot of the trend in Internet access is sketched in figure 1.1. The
amount of data sent through the Internet is also increasing rapidly.
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Figure 1.1: Amount of the Danish population with access to the Internet.

If this continues in a few years, the traffic at the Danish network will exceed
its capacity. Therefore, it may be appropriate to expand the network or make
a completely new up-to-date and future proof network with fiber optics in the
ground.

When designing such a network, a strategy of how many switching stations
and how they must be interconnected is needed. This is what this report deals

lwww.dst.dk
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with.

The purpose of this project is to develop a simulation platform for large-scale
network structures. The platform must simulate some of the most interesting
parameters, which will be explained in the report.

In order to make a useful simulation platform, different functions or tools
must be provided by the system user. Therefore, first an analysis to such a
platform will appear in this project. An analysis of the various performance
parameters which can be applied in order to enhance or solve different problems
in simulating large-scale network structures will also be given. Furthermore, a
platform which must fulfill all requirements given by the user will be described
and therefore in this context called a perfect simulation platform.

In the object oriented analysis and design, the actual simulation platform will
be developed. A use case analysis will first be performed, in order to find out
exactly how the product will be used. Relations between the classes are de-
scribed before the actual design starts. In the design phase, the static model
will describe the responsibilities, attributes, and relationships between each
class. Then implementations will be carried out, a status bar and a menu sys-
tem will give the user of the simulator the actual interface where the interaction
and information will be provided. Finally, the product will be tested before it
will be used for simulating different network configurations in order to give the
results. Different simulations will be carried out and described. Furthermore,
a continuous use of the words; platform and tool will be used throughout the
report.

The project uses the terms used in graph theory. There is a short description
of the graph theory definitions in appendix A on page 105.
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CHAPTER 2

NETWORK PERFORMANCE
PARAMETERS

This chapter contains a consideration of different network performance pa-
rameters. There are several network performance parameters and in network
design it is wanted to fulfill most of the demands from these parameters. But
an optimization concerning one parameter is often degrading one or more other
parameters. The idea behind this chapter is to find the network performance
parameters in which the simulation platform should be able to simulate. This
chapter is mostly based on [1].

2.1 Reliability

A high value on this parameter secures that every bit is delivered correctly. A
network can be reliable in form of error control and error correction. But in
network design, the reliability parameter is defined as a percentage of uptime
compared to down time. The reliability parameter is important in the ability
to trust the network. Low reliability on a network will cause a lot of harm for
a user. This parameter will not be taken into consideration when designing the
platform.

2.2 Jitter

For applications such as audio and video streaming, it does not matter if the
packets uses 20 ms or 30 ms to be delivered, as long as the transmission time
is constant [1]. The variation in the packet arrival time is called jitter. High
jitter will give an uneven quality to an audio or a video sequence, therefore the
requirements to jitter is high with audio and video on demand. This parameter
is not taken into consideration in the design of the simulation platform, since
it mostly will depend on the application a network is going to be used for.
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2.3 Bandwidth

Bandwidth has a general meaning of how much information can be carried
in a given time period (usually a second) over a communication link. In a
more technically point of view bandwidth is the range of frequencies which an
electronic signal occupies on a given transmission medium. Both analog and
digital signals have a bandwidth. The bandwidth is defined as the frequency
difference of the lowest and highest signal component in analog systems. In
digital systems bandwidth is expressed as data speed in term of bits per second

(bps).

A large-scale network will typically consist of a lot of links, each with its own
bandwidth. If the bandwidth of one of these links is much smaller than the
others it is said to be a network bottleneck in which is wanted to be avoided.
In the simulation tool, nodes and links will be given a capacity which can be
considered as bandwidth.

2.4 Latency/Delay

In a computer network, latency is similar to delay. It is an expression of how
much time one packet of data use to travel from one point to another. Some of
the most used latency measures for networks are end-to-end trip time, round-
trip time and keystroke response time.

End-to-end trip time is the time it takes for a data unit to travel from source to
destination. Round-trip time can be found by sending a packet that is returned
to sender measuring the time used. Keystroke response time is the delay from
when a button is pressed until something happens on the screen. This can
be experienced in web-browsing. Even if one is connected with a broadband
connection, there sometimes will go some time from a link is clicked, until there
are changes on the screen.

Propagation time, and the operation time of the network components as routers
and switches will influence the latency. Also this parameter is partly related
to the number of hops parameter, but will not be included in the simulation
platform design.

2.5 Cost

When analysing different topologies each element in the network costs money.
The elements to consider are the nodes and links which makes the connection
between the nodes in the network. The cost parameter is directly related to
the quality of a network, for more money more links can be added and better
nodes can be used.
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Minimizing the cost when designing a network is an important goal. The links
between the nodes have to be placed in a clever structure to achieve good
performance for an acceptable cost. In another point of view, it can be cheaper
to invest more money when building a network. If a network is build to meet
predicted future requirements, such as e.g. a larger number of fiber cables, is
the costs of course increasing. But the price of some extra fibers or fiber tubes
is relative small according to digging the ditch. Therefore money will be saved
in the future when improvements has to be added as the requirements to the
network performance is increasing.

The price to pay when using different networks is not going to be considered
in the simulation platform design. But the number of links according to the
number of nodes and link and node capacities can give an overview of the cost
parameter.

2.6 Scalability

The use of this parameter displays the network as being able to be expanded
or connected to other networks. The Internet, e.g., is a good example of a
large-scale network, where nodes are added all the time.

This parameter in the network topologies are an important step toward an
accurate mathematical model for both analysing the performance of existing
topologies and designing new and more scalable networks. This is because it is
often a problem that there is too little knowledge about the existing network
topologies when developing new network topologies for large-scaled networks.
The simulation platform will be designed in such a way that a network is able
to be expanded, but the platform will not have any knowledge concerning the
scalability parameter.

2.7 Redundancy

Designing redundant routes has two purposes: minimizing down time and load
balancing. Minimized down time is described first.

Minimized down time leads to increased uptime. By using redundant or meshed
network designs, the effect of link failures is minimized. A fully meshed network
provides complete redundancy; every node has a link to every other node. The
number of links in a fully meshed network can be calculated by the equation,
which is given below.

n—1

Number of links = n - (2.1)

In equation 2.1, n is the number of nodes. Each node is connected to every other
node. Divide the result by 2 to avoid counting node X to node Y and node Y to
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node X as two different links. This provides good performance, because there
is only one single hop delay between any two sites. A fully meshed network
is on the other hand very expensive and will need more bandwidth and CPU
resources to process broadcasts because of the high number of routes.

Load balancing is a concept that allows a node to take advantage of multiple
best paths to a given destination. The paths are derived either statically or with
dynamic protocols, such as RIP, EIGRP, OSPF, and IGRP (see appendix F for
these acronyms). Load balancing can occur with certain protocols, when there
are several equal cost routes to a single destination. This may also occur with
unequal cost paths with EIGRP and IGR [2]. Pre destination load balancing
means that the node distributes the packets based on the destination address.
Given two paths to the same network, all packets to destination 1 in that
network will go through the first path, all packets for destination 2 in that
network will go through the second path, and so on. Pre packet load balancing
means that the node sends one packet to destination 1 through the first path,
the second packet to (the same) destination 1 through the second path, and
so on. Load balancing improves network performance.

The redundancy parameter will at this time not be considered in the simulation
platform design.

2.8 Network Flow

A stream of packets from a source to a destination is called a network flow. In
a connection oriented network, all the packets belonging to a flow follow the
same route, but in a connection less network, they may follow different routes.
If the flow is good compared to bandwidth, the utilization of the network is
good. A maximum flow simulation only concerning the link capacities will be
designed in the simulation platform. To improve the maximum flow simulation
in further work with the platform, the node capacities can also be added into
th algorithm to find the real maximum flow.

2.9 Robustness in Networks

Robustness in networks means that a network has an ability to recover in
certain ranges of exceptions and situations. A robust network can take account
of the hazards of failures and their automatic recovery. Another definition
states that a robust network is a network that behaves in a controlled and
expected manner when expected variations arise in its dominant parameters,
but also in the face of unexpected variations. A simulation which calculates a
degree of robustness will not be available in the simulation platform.
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2.10 Throughput

Throughput is the actual level of raw data across a network. In other words, a
measurement of how much real data can be sent from one point, and received
at another point of a network.

The network path may involve multiple links and channels, through multiple
intermediate devices as routers and switches. Throughput can never be greater
than the bandwidth.

Reasons why the throughput is lower may for instance be that errored packets
have to be retransmitted. The throughput parameter depends on the number
of hops parameter, but no throughput parameter simulation will be designed
in the platform.

2.11 Number of Hops

Between two nodes the number of hops is the number of links in the path
chosen by the routing algorithm. This parameter is important when designing
a large-scale network according to the throughput, bandwidth, latency/delay,
propagation time, and other parameters. A number of hops simulation will be
available in the simulation platform.

2.12 Summary

This chapter has defined some basic network performance parameters. In order
to design a simulation tool within the proposed time schedule, only a few of
these parameters is decided to be implemented in the simulation platform. A
conclusion of this chapter is that the simulation platform, which is intended
to be designed should be able to simulate the maximum flow(network flow),
traffic load, and number of hops in a network. The idea behind the traffic
load simulation is that one node is sending one packet to another node, or
sending one packet to every other node in the network, and then calculate
some traffic parameters. The choice of these parameters are a combination of
the importantness of these parameters and of making the task of implementing
the tool realizable in the proposed time schedule.



CHAPTER 3

A “PERFECT” SIMULATION TOOL

This chapter describes what will be appropriate elements in a good simulation
tool. It is done in such a matter that it gives an insight in how complex a
simulation platform should be in order to satisfy the development of networks.
A tool fulfilling all these elements in this report is referred to as a "Perfect
simulation platform". When developing large-scale networks a lot of parame-
ters must be taken into consideration in the modeling and design phase, using
a simulation platform. In this chapter some queuing theory will be described,
i.e. more in general the Poisson process.

Due to the complexity in designing modern large-scale networks, there is set
higher demands for simulating network configurations during development of
the networks. Therefore, a description of such a perfect simulation platform
will now take place in relation towards the goals for the simulation platform
which is designed later. The following is listing subjects related to a simulator,
which will be discussed in this chapter.

Queuing System in Networks.

Traffic Monitor.

Human Computer Interaction.

Random Traffic Generator.

Different Protocols.

3.1 Queuing Systems in Networks

In networks, data packets through a node must be handled by the node itself
and proceed on if for example the node is a router somewhere in a network.
When data packets comes into a node, the packets meet a buffer which will
handle the packets when the node is ready to perform this service. If a new
packet arrives in the same buffer and the old packet is still in the buffer, a
queue will now start building up and become larger for each packet coming in.

10
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Filling and emptying a buffer is the theory of queuing systems. This will be
concerning the amount of buffer content, that is the queue length and the
amount of time spent in each of the elements in the buffer while passing through
the queue.

The simplest representative of queuing networks is the tandem queuing net-
work depicted in figure 3.1.

Queue 1 Queue 2
A < : A < : A

Server

Figure 3.1: The Tandem Queuing Network

Figure 3.1 illustrates a Poisson arrival process with rate A and it is called a
single queuing system with one arrival process. The figure is a simple network
involving only two nodes, such a system includes the M/M/m/K/L queues,
which is the Kendall notation.

The meaning of the notations is explained in table 3.1.

‘ Identifier ‘ Description

M M is exponential and it means memoryless, because if the
inter arrival time is exponentially distributed with mean

1/L, the expected times to the next arrival is always

1/L regardless of the time since the last arrival.

Therefore, it leads to be called as the memoryless distribution
[3].

is the number of servers

is the population size

is the service discipline

= =B

Table 3.1: The Kendall notation.



12 CHAPTER 3: A “PERFECT” SIMULATION TOOL

3.1.1 The Poisson Process

The Poisson process' of k stream with the mean rate \; results in a Poisson
stream with the mean rate A given by:

A=)\ (3.1)

Equation 3.1 counts the number of arrival processes. The parameter A is the
intensity of the process and it is the only quantity that may distinguish two
processes. Therefore, the higher the intensity is, the more arrivals per time
unit, i.e. the more intense an arrival process. The value of a Poisson counting
process at earlier times ¢t > t; > ty >,...,> t, is equal to the value t + 6 - ¢
when the value is given at the time ¢, this means that the Poisson process is
memoryless [4].

It can be concluded that designing a simulator with the use of queuing theory
gives a simulation platform a much more realistic usefulness for developing or
analysing network structures.

3.2 Traffic Monitor

Here is a short description of a traffic monitor? and the use of traffic analysis
discussed. In general a monitor is attached to a network which gives the user
information about specific events and reports statistics such as average number
of frames per second and the average frame size. In other words a monitor is
a device which listens to all traffic in a network, e.g., LAN. Such a traffic
monitor also must be able to sniff packets which are encrypted. The software
is an analysing program. In the Traffic Monitor program the user can configure
different parameters which are used when the program is running to analyse
packets in a given network. The monitor program will not interrupt the packets
following in the network, it will only take a copy of the packets detected by
the program. The idea behind the monitor program is that it is possible for
the program to analyse the packets header and payload frame to identify e.g.
the packets source and destination [5].

The network monitor is a very useful platform in the case of detecting faults in
a network, e.g. if a node is down and unable to send or receive packets. Thus
a network monitor could be a good platform for determining the networks
uptime and finding faults in a given network configuration. A network monitor
must also be able to provide the user or designer information by:

! The Poisson process is also called a point process.
2Also called a network analyzer or sometimes a network sniffer.
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e Protocols and port usage.
e File types transferred.

e User IP addresses.

3.2.1 Remote Monitoring (RMON)

Remote Monitoring also called RMON is a very useful platform in traffic mon-
itoring. RMON gives the network administrator information from the RMON
Management Information Base (MIB). The RMON became a standard in 1992
as RFC (for Ethernet) [6]. This platform is able to give informations such as
graphing, alarm, logging, and reporting capabilities or health. The network
monitor which must perform the sniffing must consist of the following two
components:

e A physical component which measures the packets flowing pass, this is
connected to the physical medium.

e The processor which analyses the gathered data.

Analysed data is transmitted through a network to a remote network manage-
ment station. Therefore, monitoring a network in such a case is called Remote
Network Monitoring.

Now the question is how it is possible to implement a network monitor in a
simulation platform for network developing. This must be a hard task and is out
of the scope for the simulation platform to be developed. It can be concluded
that such a feature in a network simulator must run on some hardware in
order to make the simulation possible, and for verifying the correctness of the
simulation. Furthermore, a network monitor must be one of the most important
features in network management systems.

3.3 Human Computer Interaction

A perfect and a successful simulation platform must have a graphical user
interface (GUI). This is needed in order to make a user friendly interaction
between the user and the platform. But developing human computer interac-
tion (HCI) is time consuming and requires some analysis of the users demands.
This is in order to get a user friendly platform, from the user’s point of view.
Therefore, this section will give an overview of what is needed in such a GUI
in order to provide the user with the needed information and usage.
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For a simulation platform the following opportunities and information have to
be given in a user interface in order to satisfy a user:

e Graphical Editor.
e Status bar.

e Help.

3.3.1 Graphical Editor

The possibility of drawing a topology virtually in a GUI is concidered as a
high demand from the users perspective in order to enhance the usability and
performance of the simulation platform.

3.3.2 Status Bar

The status bar provides information to the user. For a user will it be appropri-
ate to know the estimated remaining simulation time. It will also be convenient
for the user to see a virtual bar or counter showing that the simulation is actual
running and thus in progress. For the use of time, an accurate reference clock
is required. This allows time stamping of traffic sent or received and measure-
ment of quality of service (QOS) parameters over the network. Therefore, a
status bar is a must in a simulation platform, to inform the user what the
platform is doing.

3.3.3 Help

In order to give the user at perfect program and thereby a useful HCI the
platform must provide a help function. The help function can be a description
of how to use the platform, such as a user manual for the user.

3.4 Random Traffic Generator

Different users are sending different amounts of data through the network.
It would be convenient to simulate this by using a random traffic generator
(RTG), which gives the simulation of a network configuration a more realistic
appearance from the users point of view. Therefore, in order to make a realistic
traffic generator, the RT'G has to be running in real-time. The generator must
have a large set of different parameters and manage simultaneous IP connec-
tions (TCP or UDP). Furthermore, a random traffic generator can in practical
approaches, e.g., be used in a simulator to test performance in network devices,
such as routers, to ensure they are working correctly.
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3.5 Protocols

This section states two protocols for simulations in a simulation platform.
It could be convenient to simulate a given network with different network
protocols. The most basic protocols to use in a simulation platform for network
are the following:

e TCP.
e UDP.

These protocols are chosen since they are the two main protocols used for the
Internet. The protocols are connection less (UDP) and connection-oriented
(TCP) protocols respectively>.

Furthermore, there must be some network control protocols (NCP) for each
network layer supported. The reason for simulating different protocols is to
test differences in performance in the traffic parameters.

3.6 Summary

In this chapter some different parameters for developing a simulation platform
have been described and discussed. It can be concluded that the most impor-
tant issue in developing a simulation platform has to be clear; namely that the
platform must be able to be scaled. Therefore, a platform programmed in a
language which supports the ability to be expanded is a strict requirement.

3UDP is the abbreviation for User Datagram Protocol and TCP is the abbreviation for
Transmission Control Protocol



CHAPTER 4

DESIGNING A LARGE-SCALE
SIMULATION PLATFORM

In this chapter the motivation for designing a large-scale network is described.
The reasons for building such a tool and if it is worth the effort is answered in
the proceeding section. Furthermore, the requirements of the simulation tool,
and ways of representing graphs are described. The last section consists of a
discussion of the programming language, which is going to be used to design
and implement the simulation tool.

4.1 Motivation

The first thing to do is to define simulation:

e A system that represents or emulates the behavior of another system over
time. A computer simulation is a simulation where the system doing the
emulating is a computer program [7].

To make this clearer, a computer simulation is a computer program that models
the behavior of a physical system over time. The program variables (state
variables) represent the current state of the physical system. A simulation
program modifies state variables to model the evolution of the physical system
over time.

In other words, a computer program that simulates a network is the goal for
this project. But why do simulations? In designing a network, simulations make
experiements less costly than real world experiments. The simulation would be
used as a decision tool after testing different topologies for some parameters.

A network simulation tool is used for evaluating network hardware, software,
protocol and services.

Parallel simulation is used in network simulations. Parallel simulation refers to
the technology concerned with executing computer simulations over computer
systems containing multiple processors, which can be:

16
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e Tightly coupled multi processor systems.
e Workstations interconnected via a network.

e Hand held computers connected by wireless links.
The reasons for executing over multiple CPUs are:

e Reduced model executing time, up to n-fold reduction using n CPUs.
e May not have enough memory on a single machine.

e Scalable performance, maintaining the same execution speed for bigger
models by using more CPUs.

Network simulation is an indispensable tool for testing network performance
parameters and it is a very useful tool in network planning.

4.2 Limitations and Requirements for the Simulator

Elements that would be appropriate in a good network simulation tool is pre-
sented in chapter 3 on page 10. Developing a platform containing all these
elements is a huge task, and will be nearly impossible in the time scope of
this project. To make the implementation of the platform manageable, some
limitations are made.

The simulator must have a pure text interface, in a command prompt. Menus
will navigate the user through the program. An overview of the program flow
through the menus is depicted in figure 7.1 on page 34. Commands from the
user are only given from keyboard, — no use of mouse.

A network can be generated by entering the number of nodes, and then select
the node capacity. The node capacity can be entered manually for each specific
node, or automaticly assigned with a given value. The user must be able to do
the generation of links between the nodes in two ways, both with automatic
or manual assigning of capacity; either by automatic generation of standard
network structures or by manually entering. The platform must be able to
generate five standard network structures: a simple ring, fully connected, wheel,
double ring and N2Rpq. These network structures will be described later in
this report. There must be a possibility that the platform could randomly
generates links between a given number of nodes.

If the manual link generation is used, and some nodes are not assigned any
link when the user ends link generation, the user must be notified of this. An
editor for creation, editing and presenting networks in a graphical manner is
out of project goal.
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The representation of a network must be as lists of links and nodes. These lists
contain central data for the network elements, such as node number, capacity
and load for nodes, and start node, stop node, capacity, and load for links.

When a network is created, three files must be created. One for node, one for
link, and one for result data. When a network is opened, the user must be
able to edit the network; remove and insert nodes and links, and to change
their capacity. If a node is removed, the simulator must check if any link is
connected to this node, and remove them if so is the case. If a node is created,
the platform must also here alert the user if no link connects this node to the
rest of the network.

Then the platform must be able to do some simulation of networks. A lot of
different simulation functions can be implemented, but again due to the limi-
tations in time, only the following three simulation tasks will be implemented:

e Number of hops — This function must count number of hops (NoH)
from every node to all others in the network, and use this data to calculate
the sum of NoH, average NoH and maximum NoH.

e Traffic load — In this simulation the user must have two options, either
to simulate the load in the network when sending a packet from a given
node to another given node, or when sending a packet from a given node
to every other node in the network. In the latter option, the simulator
must route the packets in a clever manner where the shortest path is used.
Where several paths has equal distance, the load must be distributed on
links with lowest load. The output of this simulation must be sum of,
maximum and average values for node, and link load.

e Maximum flow — To find the maximum data flow from a given source
node to another given destination node.

During the simulation, a status bar should show the elapsed time, an estimate
of remaining time and a percentage of simulation progress must be currently
updated and printed to the screen.

It must be possible to create projects, and include networks in these projects.
Furthermore must it be possibilities for plotting the simulation results, where
there is one plot for each parameter in the result file. All networks in the
project must be in these plots, to be able to compare their performance.

4.2.1 Summary
In order to make the implementation of the simulation platform a manageable

task in the given time schedule, some simplification compared to a perfect net-
work simulation tool is made. There is no graphical user interface, only a menu
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based, keyboard entry interface through a command prompt. Only the three
simulations described above will be implemented. The queuing technologies at
the nodes, and a random traffic generator to simulate an "actual" data flow in
the network will not be implemented.

4.3 Representing Graphs

There are several appropriate ways to represent a graph for implementation
in a simulation program. Adjacency matrices, adjacency lists and link lists are
discussed here.

In an adjacency matrix is a link represented by a one. If a link is connected
to node 1 and 2, there is a one in matrix element [1]|[2] and [2][1] if the link
is bidirectional. Between nodes with no connection there is a zero. Practical
applications of graphs usually requires that they be annotated with additional
information, a label. Such information may be attached to the links of the
graphs. An undirected graph with labeled links can represent geographic in-
formation in which the nodes represent geographical locations and the links
represent possible routes between locations. The label on the links can then
represent distances between the end points. Figure 4.1 shows an example of
such a labeled undirected graph.

Figure 4.1: Undirected graph with labeled links.

To represent a labeled graph the adjacency matrix again is used, but not
with 0 and 1 to represent connection or not. Here with the labels to represent
connection and oo to represent no connection. The adjacency matrix for the
graph in figure 4.1 is shown in table 4.1.

If O is the space needed per element in the adjacency matrix and take in
consideration that the adjacency matrix has |V'|? entries, the amount of space
needed to represent the links of a graph is O(|V|?). This amount of space is
regardless of the actual number of links in the graph. If the graph contains
relatively few links, |E| <& |V|?, then most elements of the adjacency matrix
will be zero (or 0o). An adjacency matrix in which most of the elements are
zero (or oo) is called a sparse matrix. This leads to that a sparse graph is
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Nodes | a | b | ¢ | d

a oo | 31|41 | ©
b 31 | o0 | 59 | o0
c 41 | 59 | o0 | 26
d o0 | oo | 26| 00

Table 4.1: Adjacency matrix for an undirected labeled graph.

a graph with relatively few links. A graph with many links relatively to the
number of nodes is called a dense graph.

Adjacency list is also often used to represent a graph. This method of repre-
senting graphs uses |V| linked list, one for each node. The linked list for a node
contains the set of nodes adjacent to the specific node. An example of an adja-
cency list representation is shown in figure 4.2. The labels are not considered
here.

ERNESCEN
SENEESCIE]

e[ -~[a[ (b F~{d[
ESGE

Figure 4.2: Adjacency list representation.

In figure 4.2, notice that the total number of list elements used to represent an
undirected graph is 2 x | E|, therefore the total space required for the adjacency
list is 2 x O(|E|) for undirected graphs. If the number of nodes is relatively
small compared to the number of links an adjacency list occupies less space in
memory than the adjacency matrix.

The link list representation is containing the source node and sink node for
each link. If a label is wanted to be included there have to be an extra element
containing the label. An example of a link list is shown in table 4.2.

In table 4.2, is the the total space required for the link list with label is 3 x |E|
for undirected graphs.

The link list is decided to be used in the platform because it is easy readable
from a file, and it easy to expand it to give the links more properties such as
different types of labels.
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Source | Sink | Label
a b 5
a c 2
a d 1
b ¢ 4
C d 2

Table 4.2: Link list for an undirected labeled graph.

4.4 Discussion of Programming Languages

To implement a large-scale network simulation tool, many programming lan-
guages can be used. The first thing is to decide whether structured or object
oriented programming should be used. Object oriented programming is decided
to be used for several reasons. One of these reasons is that it is easier to work
in a group with object oriented software projects because the different tasks is
divided into smaller parts.

Which object oriented language is best fitted to solve the problems during
designing a simulation tool? Java was first considered because of its simplicity
and the easiness of making a graphical user interface. But Java has a dis-
advantage of run time speed, and the speed is an important parameter in a
large-scale simulation tool. Therefore, instead of Java the C++ is considered.
In C++, it is relatively more difficult to implement a graphical user interface,
and it is generally a more difficult programming language for non experienced
software designers. In spite of this C++ is chosen because of the fast running
time.

4.5 Summary

This chapter begins with reasons for building a simulation tool, and continues
with some requirements for the simulation tool in which is going to be im-
plemented. After this different ways of representing graphs is described, and
it is decided that the simulation tool is going to use link lists to represent a
network. Then the reasons for the choice of the programming language comes
in the last section. The choice of C++ leads to an object oriented analysis and
design, which will make the C++ coding easier, and give a better overview of
how to solve the different problems. This procedure is described in chapter 5
and chapter 6.
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Development of the Simulation
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CHAPTER 5

OBJECT ORIENTED ANALYSIS

Working with an object oriented software project, it is proper to build a model
in order to manage the complexity. The goal of the model is to create a proper
abstraction of the real world. This section is mostly based on [8]

The iterative design progress is listed below.

Conceptualization

Analysis

Design

Implementation

Testing

Roll out

The Conceptualization and the Analysis is covered in this chapter.

5.1 Conceptualization

The conceptualization for the simulation platform is:

Design a simulation tool to test performance in large-scale network topologies.
The test parameters are number of hops, traffic load, and mazximum flow. It
must be possible to make changes in the network topology to optimize the per-
formance.

5.2 Requirements Analysis

To move on to the analysis part, an understanding of how the product will be
used and how it must perform is necessary.

25
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5.2.1 Use Case Analysis

A use case is a high-level description of how the product will be used. It is a
description of the interaction between an actor and the system itself. An actor
is any person or system that interacts with the system being developed.

Actors for this system are the user and the platform.

Use cases:

e The user creates a new project.

e The user opens a project.

e The user closes the project.

e The user specifies a new network in the project.

e The user adds an existing network to the project.

e The user opens an existing network in the project.

e The user removes an existing network from the project.

e The user makes changes in a network.

e The user will auto generate a network topology.

e The user closes the active network in the project.

e The user selects wanted simulation parameters and starts simulation.
e The user stops the simulation.

e The platform plots the simulation results from the different networks.

e The platform shows a status bar during simulation.

5.2.2 The Domain Model

The domain model captures all knowledge of the domain which one is working
in. A part of the domain model will contain domain objects, which describes
all objects in the use cases. This is not a description of the design objects, but
rather the objects in the domain.

Domain objects in this system are: user, platform, project, network, nodes,
links, status bar, simulator, simulation results, files, and plot.

Before deriving the domain model, the attributes and behavior of the objects
are listed:
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e User, Attributes: Actor.
e Platform, Attributes: Actor and Name. Behaviors: close the platform.

e Project, Attributes: Name. Behaviors: Define parameters, create, save,
close and open a project.

e Network, Attributes: Name, structure. Behaviors: create and edit net-
work.

e Nodes, Attributes: Number, capacity, input-output-transit load.

e Links, Attributes: Number, source node, sink node, capacity, connection,
load.

e Status bar, Attributes: size, color, time. Behaviors: update/start /stop
status bar

e Simulator, Attributes: runtime. Behaviors: start/stop simulation, sim-
ulate number of hops/packets per second/traffic load.

e Simulation results, Attributes: data, simulation time.
e Files, Attributes: Name, extension. Behaviors: open/close file.

e Plot, Attributes: x/y coordinates, color. Behaviors: create chart.

Relations

Generalization describes the relationship between the objects, that one ob-
ject can be a subtype of another. It is often equated with inheritance in pro-
gramming, but there is a clear difference between the two. Inheritance is the
programming implementation of generalization.

As in the example given above, one object is composed of many sub objects.
There is a has a relationship, the network has nodes and links. This is called
containment, and is illustrated in figure 5.1, showing the containment relation-
ship, as an arrow with a diamond in the tail.

Another relationship is association, which suggests that two objects know of
one another, and they interact in some way. An example is the user and the
platform. At this state, their interaction is just suggested. In figure 5.1, asso-
ciation is illustrated with a straight line. It is important to mention that 5.1 is
not design objects, but rather objects in the domain. This is a documentation
of how the world works, not documentation of how the system will work. The
design objects will be documented in chapter 6 on page 30.



28 CHAPTER 5: OBJECT ORIENTED ANALYSIS

Menu Platform User
/7 \
Simulator Project
/ \
Results Status bar Network
/ \
Plot Links Nodes

Figure 5.1: Generalization in the simulation platform.

5.2.3 Scenarios and Guidelines

The use cases have to be given more depth by breaking each of them into
different scenarios.

Guidelines is used to document each scenario to test that if each scenario
includes the following:

e Preconditions - what must be true for the scenario to begin.
e Triggers - what causes the scenario to begin.

e What actions the actors take.

e What results or changes are caused by the system.

e What feedback the actors receive.

e Whether there are repeating activities, and what causes them to con-
clude.

e A description of the logical flow of the scenario.
e What causes the scenario to end.

e Postconditions - what must be true when the scenario is complete.
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In the following one use cases is analysed; with the scenarios first and the
guideline itemized under the scenarios.

The User Creates a New Project

e User choose "create new project" from the start menu, the platform asks
for a name, the user types a name, the platform accepts name and a new
project is created.

— Preconditions: The platform is in the start menu.
— Trigger: The user creates a new project.

— Description: The user choose "create new project" in the start menu,
and give the project a unique name and the platform creates a
project with the given name.

— Post Conditions: A new project is created, and the platform enters
the project menu.

e The user choose "create new project" from the start menu, the platform
asks for a name and the user types a name. Then the platform finds an
equal project name and asks for a new name. The user types a new name,
the platform accepts the name and a new project is created.

— Preconditions: The platform is in the start menu and projects with
equal name exists.

— Trigger: The user creates a new project.

— Description: The user choose "create new project", and give the
project an equal name as an existing project. Then the platform
asks for a new project name, the user gives the project a new name
and the platform creates a new project.

— Post Conditions: A new project is created, and the platform enters
the project menu.

The rest of the guidelines of the remaining use case scenarios and guidelines
can be read in appendix B on page 108.

5.3 Summary

The object oriented analysis has a main goal: To make the software designer
sure that he or she understands the customer‘s needs. This chapter has anal-
ysed the task of designing a simulation tool in a very abstract and detailed
way. In order to get an overview of the problems in implementing this tool,
the object oriented analysis is a helpful part. The next chapter describes the
object oriented design, this is the last step before the implementation of the
simulation platform.



CHAPTER 6

OBJECT ORIENTED DESIGN

The analysing part is described in chapter 5 on page 25. The analysis focuses
on understanding the problem domain, whereas design focuses on creating the
solution. This chapter will describe the process of transforming the understand-
ing of the requirements into a model, which can be implemented in software.
This will focus on the object oriented design (OOD).

When programming using C++-, classes are to be created. Design classes and
C++ classes are isomorphic, each class in the design will correspond to a
class in the code. On the other hand it is possible for the design classes to be
implemented in other languages than C++.

From the scenarios in section 5.2.3 on page 28 the following classes can be
pulled out:
e The Project - contains the different networks to compare in a simulation.
e The Network - a collection of nodes and links.

e The Simulation - is responsible for starting the specified simulation and
all other actions when a simulation is started.

e The Links - contains a list of connections, capacities and load.
e The Nodes - contains number of nodes, capacities and load.

e The Number Of Hops - starts the number of hops simulation.
e The Traffic Load - starts the traffic load simulation.

e The Maximum Flow - starts the maximum flow simulation.

e The Status Bar - shows the progress during simulations.

6.1 The Static Model

The static model focuses on three areas of concern: responsibilities, attributes
and relationships. The responsibility is the most important part, and the guid-
ing principle here is that each class must be responsible for one thing. CRC

30
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cards can be used to get a handle on the responsibilities of the classes. CRC
is abbreviation for Class, Responsibility and Collaboration, and is used to get
an overview of the primary responsibilities of the initial set of classes. At this
point there is no focus on relationships; the class interface or which methods
will be public and which will be private. The focus is only on understand-
ing what each class is doing. After a CRC card session the CRC cards are to
be transformed into UML. Responsibilities are translated into class method
and whatever attributes captured are added as well. The program Together is
used to implement a C++ code from the UML classes. All the UML classes
are written into this program and the aggregation is specialized. The diagram
written in Together is shown in figure 6.1, just showing the classes and the
aggregation.

Project

I

Simulation 3 Network

el I

NumberOf Traffic Maximum Nod Link
Hops Load Flow odes INKS
Status Bar

Figure 6.1: The Together design (without the class methods).

The methods and variables in the classes are specified in Together. Figure C.2
in appendix C on page 117 is showing the UML diagrams for the project, the
network and the simulation class. The + and - in front of the data members
means public and private data members, respectively. The first data members
are class variables, and the data members under the line are class methods.

The Project class has methods, in order to have control of the creation and
opening and saving of projects. A project is a collection of networks and differ-
ent results from simulations of these network. From here new network can be
be created and existing networks can be added or removed from the project.
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The Network class has a control of creation of network. Also manipulation of a
network can be performed with the methods AddNodeToList(), DeleteLink(),
DeleteNode(). The connection of the nodes can be typed in manually, or con-
nected automaticly by the Network class. The capacity of the nodes and links
can be typed in for each node and link, but also by typing the same capacity
for all nodes and links. This class contains a check of the network, e.g. it checks
that all nodes have a connection to one or more other nodes. The network class
initiates three different files when a network is created. For example if a net-
work is named Petersen, the Network class makes petersen.lnk, petersen.nod
and petersen.res. These files contains information about the network, one file
for link information, one file for node information and one file for simulation
results. From the network class the simulation class can be called in order to
simulate the "active" network.

The Simulation class allows simulation for the parameters max flow, number
of hops and traffic. The class has methods for reading and writing in the result
file in order to save the results. It has also a CountLinks() and CountNodes()
methods which are used to find the arguments in the specific simulation classes.

Figure C.1 on page 117 in appendix C is showing the UML class diagrams
for the nodes and the links classes. The Nodes class has different methods for
setting and getting the node parameters like node number, node capacity and
loads. The Links class has almost the same methods for the links.

Figure C.3 in appendix C on page 117 shows the UML class diagrams for the
traffic load, the number of hops and the maximum flow classes. The Traffic load
class contains methods which are needed to perform a traffic load simulation.
The method performing the traffic load algorithm is Simulate TrafficLoad().
This algorithm will be more explained in the implementation part in chapter
7. This will also be the case for the max flow and the number of hops classes.

Together generates the class header files for all the classes which are defined
in figure 6.1. It has made the platform for further C++ coding, and this will
be described in the following chapter.

6.2 Summary

This chapter has concerned about the object oriented design, it has modeled
the object oriented model in which to be implemented. Since Together has
generated all the class header files, then so the class definitions can be coded
now. The next chapter describes the process of implementation of the simula-
tion tool. The development of the simulation algorithms will be described more
detailed, since these algorithms are considered as the most important part of
the simulation tool.



CHAPTER 7

IMPLEMENTATION OF THE
SIMULATION PLATFORM

Chapter 6 modelled the simulation tool and the Together program prepared
the class header files for implementation. This chapter describes the process
of implementing the class definitions and the main program with a menu. In
order to get help in the implementation, [9] and [10] is mostly used. The source
code can be found on the enclosed CD-ROM.

In order to have a clue how the user should use the simulation tool, a proposal
to a user interface is made. It is not a graphical user interface, but a simple
menu interface. Figure 7.1 shows this menu interface and the flow when using
the program.

7.1 The Platform

Platform contains the main() function, and is therefore the driver for the
simulation tool. The main menu of the program is implemented here, and
from this the user is able to create a new or open an existing project, or to
exit the program.

The create new network option initializes an object of type Project, and calls
the method CreateNewProject() for this object as described in section 7.4. To
open a project, a similar procedure is used.

7.2 The Links and Nodes Classes

When developing a network simulator with object oriented programming, it
will be appropriate to have a class for Links, and another for Nodes. It is then
possible to model nodes and links with their relevant properties.

When initializing a network, three files are created. The name of these three
files are the same as the name of the network. Their extension are .Ink, .nod

LCDROM/Sourcecode
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Main menu

(1) - Create new project ™| Enter project name:
(2) — Open project =
(3) = Quit
i Yo

Project menu

(1) - Create a new network .
Enter network name:

(2) — Open a network L
(3) - Lists networks in project l
(4) - Add a network to project Number of
(5) — Remove a network from Nodes:
project V
(6) — Plot networks in project Node
(7) — Save project and return capactty:
T to main menu
Choose
automaticly
} + or manually
Network menu connection:
1
(1) - Add node Link
(2) — Add link capacity:
(3) = Change node capacity L]

(4) — Change link capacity
(5) — Delete node

(6) — Delete link

(7) - List network data

(8) — Simulate
(9) - List results
c (10) - Close and save network

——

Simulation menu

(1) = Numbers of Hops

(2) - Traffic Load

(3) — Maximum Flow

—  (4) - Back to network menu

Figure 7.1: Program flow.
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or .res as if they contain link-, node- or simulation result data as described in
the previous chapter.

A network will typically contain several nodes and links. But how many? The
nodes and links have to be ordered somehow in the network. One of the solu-
tions could be to use arrays. But then it will be needed to specify a length of
these, and the network will not be able to contain more elements than these
given lengths. Of course it is just to use large array lengths that is never ex-
ceeded, but then a lot of memory will be occupied to no use. The solution
to this problem is to use pointer lists. Each network element (node or link)
includes a pointer to another element of same type. Then the elements are
chained together, and a dynamic data structure is obtained. An example of
this is shown in figure 7.2. In figure 7.2 a list of links is shown. The pointer
LinkListPtr points to the first elements in the list. To be able to edit the list,
inserting new and deleting links, a pointer to the last element is needed. From
the figure it can be seen that every element has a pointer of data type Links
which points to the next element in the list. The pointer in the last element is
set to point to NULL.

Links* Links Links
double LinkNumber double LinkNumber
int StartNode int StartNode
int StopNode int StopNode
int Capacity int Capacity
int Load int Load
Links* NextLink Links* NextLink

Link 1 Link 2
Links*
Links Links
double LinkNumber double LinkNumber
int StartNode int StartNode
int StopNode int StopNode
int Capacity int Capacity
int Load int Load
Links* NextLink Links* NextLink

Link n-1

Link n

Figure 7.2: Pointer list of links.

Figure 7.2 shows the private data members in the Links class. It is possible
to edit the data, using set- and get methods, for any link in the list by first
initialize a temporary Links-pointer and assigning this the value of LinkLustPtr.
The temporary pointer can then be manipulated to point to link; by assigning
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it the value of NextLink in link;_ i, and link; can be edited.

The constructor for the Links class has four arguments, the first argument is
a link counter, the two next are the node numbers in both ends of the link,
and the fourth is for setting the capacity. If the capacity argument is zero, the
constructor will ask the user to enter a capacity.

A similar structure is used in the Nodes class. The private data members in
this class are properties for the nodes that is relevant for the simulator: int
NodeNumber, int InputLoad, int OQutputload, int TransitLoad, int Capacity and
Nodes* NextNode

The constructor in the Nodes class has two arguments, number, and capacity
of the node. Also for a new node, the user will be asked to set the capacity if
this argument is zero.

Both classes also contain a method for printing all data to the screen.

7.3 The Network Class

A large-scale network will typically have a lot of different elements, but in this
simulator only the nodes and links are considered. The Network class therefore
has to include the Links and Nodes classes to be able to create a network.

The constructor in the Network class initializes the LinkListPtr, and NodeListPtr
to point to NULL.

To create a new network, the method CreateNetwork() has to be called for
an object of Network type. The user will be asked to enter number of nodes,
and to enter their capacity. The links can be arranged in standard structures
as wheel and double ring, or by manually entering of start- and stop node for
each link.

When a network is created, a menu appears on the screen. From this the user
is able to edit the network, add, delete and change the capacity of nodes and
links. Simulation of the network is also called from this menu. All network
data, as node and link traffic, and simulation results, are, as mentioned before
written to files. To be able to check this data while running the program, there
is also possibilities in the menu for listing this data on the screen.

Before simulation, all network data is written to files, and deleted from memory
using DeleteNetworkMem(). In this method a temporary pointer is set to point
to the same address as LinkListPtr, and until this pointer points to NULL,
which means the last element in the list, each link is deleted, see figure 7.2.
A similar operation are done for the nodes. Each simulation reads the data
in the needed files to run the simulation. Since the network structure is not
manipulated during simulation, a dynamic data structure is not used there.
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The number of nodes and links are given from the files, and therefore arrays
of fixed lengths, the actual number of network elements, can be used.

If one wants to add a node to the list, the method AddNodeToList(int) is used.
The argument is the node number that is controlled by a node counter for
the network. A link can be added with AddLinkToList(int, int, int). The three
arguments are link number, start node and stop node, respectively. Before
this method is called, there are possibilities for checking if the nodes given
as arguments actually exist in the network by DoesNodeExist(int) where the
argument is the node number.

It is possible to delete a single link by DeleteLink(int, int), the arguments
are the node number in each end of the link. The method will check if the
link actually exist by SearchLink(int, int), before deleting it. A node can be
deleted by sending a node number as the argument in DeleteNode(int). The
node number will be checked to confirm that the node actually exists. Then
the method CkeckLinks(int) searches if any links are connected to this node,
and these will then be deleted.

ListData() is used to list Network data on the screen. It calls PrintNodes()
and PrintLinks() that list node and link data.

There are different methods for generating standard network structures. The
simplest one is CreateRing(), which creates a links from node 1 to 2, 2 to 3,
.., n—1ton, and at last from node n to 1, where n is the number of nodes
in the network. CreateFullyConnected() will create a fully connected network,
where every node have a link to every other node. Figure 7.3 shows an example
of these structures for a network of five nodes.

@ (b)
Ring Fully connected

Figure 7.3: Standard network structures.
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The simulator has possibilities for generating three degree 3 networks, wheel,
double ring and N2Rpq. When the nodes are connected in a ring, a wheel
structure easily can be made. Links are added from node 1 to n/2 + 1, 2
to n/2 4+ 2, ..., n/2 to n/2 + n/2, figure 7.4 (a). Studying this structure,
and figure 7.4 (b), it can be seen that they are equal. Then a double ring
structure, see figure 7.4 (c), can easily be made by manipulating two links. The
Petersen structure is described in chapter 9, and is an example of an N2Rpq
graph. Such structures can be generated by manipulating the links in the
inner circle of double ring. The methods Create Wheel(), CreateDoubleRing()
and CreateN2Rpq() handles this.

(@ (b) (©
Wheel Wheel - redrawn Double ring

Figure 7.4: Degree three network structures.

The method CreateRandom() randomly creates links between the nodes. The
user is asked to enter the maximum degree of (the highest number of links
connected to) the nodes. The platform then generates links until every node
is connected to the network. Figure 7.5 shows an example of such a network
with 10 nodes and a maximum degree of 3.

O @ @
(1) (5)
& & @O ©

Figure 7.5: Random generated network.

The method prevents generation of links where start and stop node is the
same, and copying of links generated before. However, the situation depicted
in figure 7.6 may occur. If a maximum degree of 3 is set, and all nodes should
be connected, the loop doing the link generation will never terminate in this
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situation. Node 3 can not be connected to the other nodes since the maximum
degree is 3. Therefore, after a certain time, depending of the number of nodes,
all links are deleted, and the link generation is restarted.

Figure 7.6: Possible problem in generation of random networks.

The last way to generate a network is to enter the links manually. If
CreateManually() is chosen, the user has to specify the start- and stop node
of every link. The method will ask for new links until ’0’ is chosen as start
node, and then link registration is stopped. Then the network will be checked
to verify that all nodes are assigned at least one link. The nodes that fail this
test will be listed on the screen.

As mentioned in section 7.2, three files are created to contain network data.
These are created by CreateFiles(). The user will be asked to enter a network
name. If a network of equal name already exists, a new name has to be entered.
The link and node files are just created and left empty. The .res file that will
contain simulation data are initialized by InitResFile() with all values set to
0.

A requirement for the simulation algorithms used in this simulator is that if
there is a node with node number 1, and that the rest follows in descending
order. To ensure this, RearrangeNetwork() is always called before writing net-
work data to the files. If a "hole" in the list of node is found, the next node will
be assigned this node number. The links that are connected to this node also
has to be updated. This is done with FizLinks(int, int), the first argument is
the old, and the second is the new node number. The method searches trough
all links and updates the connections. An example of this is shown in figure
7.7

This rearrangement of the network may be confusing for the user. If an actual,
or a planned network is entered into the simulator, he or she might has an
overview of the network in a geographical perspective. If then a node is deleted,
the node numbers, that in this platform is the identifier of a node, may change,
and the overview may be lost. A solution to this problem could be to use one
extra parameter for each node, namely a node name. The the node number
could be a internal parameter for the simulation platform, hidden for the user.
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Network
edited e e Rearr.Netw.( )
EEE—

Node list: Link list: Node list: Link list: Node list: Link list:
1 1-2 1 1-2 1 1-2

2 2-3 2 2-4 2 2-3

3 3-4 4 4-1 3 3-1

4 4-1

Figure 7.7: Use of the RearrangeNetwork() method.

When the network editing is finished, SaveNetwork() calls the methods WriteLinks()
and WriteNodes() which writes the network data into files.

To open an earlier created and saved network, OpenNetwork(char*) is used.
The argument is the network name. If no network with this name exist, the
user is notified, and the operation is aborted. If the network does exist, the
link and node files are read, and written into memory in the same structure as
shown in figure 7.2.

There is also several set- and get methods to set and read the private data
members of a Network object.

7.4 The Project Class

To be able to compare the simulation results from different networks, a Project
class is included in the simulation platform. A project is just a simple list of
networks. The idea is that one should be able to compare the networks in
the list. In the main menu of the platform one has to create a new, or open
an existing project. Then the project menu appears. From this the user is
able to create new, or open an existing network. Other possibilities are to add
or remove networks from project, and to list the included networks to the
screen. An open project keeps the networks in a dynamic data structure. In
the project menu is it also possibilities to call the plotter, in which plot the
different networks included in the project according to different parameters.
The plotter implementation will be explained in section 7.10.

The constructor of this class is very similar to the one in the Network class.
This one initializes a NetworkListPtr to point to NULL, and sets the Network-
Counter equal to 0.

A new project is created in CreateNewProject(), the user is asked to enter
a project name, and if it exists, another name has to be entered. When a
new name is created, an empty file with the given name, and extension .prj is
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created. Later the content of this file is a list of the networks included in the
project.

The OpenProject() method is first asking the user to enter the name of the
project to be opened, if there is no file with the given name, the operation is
aborted. Does the project exist, the .prj file is read and the listed network is
stored in memory, and the project menu appears.

If "Create new network" is chosen from the menu, NewNetwork() will initialize
an object of type Network, and the CreateNewProject() method from Network
class will be called for this Network object, and the network menu is entered.
When the user goes back to project menu, the network is as described earlier
saved to files, and deleted from memory.

Another possibility is to open a network, also here first an object of type
network is initialized. The user is asked to enter a network name, and if the
network exists the method OpenNetwork(char*) from the Network class is
called. When the user is done with editing /simulating the network, the network
is written to files and deleted from memory.

The two methods, AddNetwork() and RemoveNetwork() are used to add and
remove networks from the list in a project. When the user closes a project, the
network list is saved in the .prj file by SaveNetwork(). Then
DeleteProjectMem() is used to delete the network list from memory.

From the project menu, there is a possibility for plotting the parameters from
the result files. The actual parameter for each network in a project are de-
picted in the same plot, and hence the networks can be compared. The method
PlotResults() reads all the results files in a project, and write only the actual
simulation values to a new file, "plotdata.dat." Then it runs a Java application
that reads the .dat file, and plots the results.

7.5 The Simulation Class

As described in section 7.1 the simulation of a network is started from the
network menu. A simulation menu is entered, and the user can choose between
the three simulations, number of hops, traffic load and maximum flow. Before
the simulation menu is entered, the network is written to files.

Using the methods ReadResultFile() and WriteResultFile(), the Simulation
class has the responsibility of read and write simulation results to the .res
file. This operation is done at this level, and not in the specific simulations
to avoid the possibility of that one simulation discarding data from another
simulation. The class has a private data member for all of the different values
in the .res file. When a simulation object is initialized, the ReadResultFile()
method is called in the constructor, and the values in the result file is copied
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to the private data members mentioned above.

The argument in the constructor is the network name, this name is used to
create string variables containing the name of the three files associated with
a network. This class also takes care of counting the nodes and links in the
network, which is done with the methods CountLinks() and CountNodes() that
is also called from the constructor.

The Simulation class contains a method for each simulation type. An object
of the wanted simulation is initialized by sending the required data for the
constructor as arguments. The results of a simulation are copied to the results
variables in the Simulation class by using get functions from the class of this
specific simulation.

7.6 The Maximum Flow Class

In order to find the maximum flow in a network an algorithm made by Ford
Fulkerson is used together with a breadth first searching algorithm. The task
of finding the maximum flow can be summarized as this:

Given a directed link with a source and a sink and capacities assigned to the
links, determines the maximum flow from the source to the sink. For each link,
the flow must not exceed the link‘s capacity, and for each node, the incoming
flow must be equal to the outgoing flow [11].

Since the network considered here have bidirected links, the links are made
bidirected in this class with a simple for loop in the capacity matrix initializa-
tion. This is done by setting the capacity from e.g. node 1 to node 2 equal to
the capacity from node 2 to node 1.

The Ford Fulkerson algorithm is also called Ford Fulkerson Labeling algorithm
and it works like this [11]:
e Initialization: Let x be an initial feasible flow, e.g. z(e) = 0 for all in E.

e Flow Augmentation: If there are no augmenting path from s to t on the
residual network, then stop. The present x is a maximum flow. If there
is a flow augmenting path p, replace the flow x as:

z(e) + A if e is forward arc on p.

I
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z(e) — A if e is backward arc on p.

I
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Where A is a minimum value of residual capacity on p. Repeat this step.

The definition of a augmenting path is:
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A path with alternating free and matched links which begins and ends with free
nodes. Used to augment (improve or increase) a matching or flow [12].

The augmenting path is stored in a array called pred[/ in order to have control
of the different path in which there is a flow. The capacity matrix is also
initialized, this shows all the link capacities together with source and sink
node. A flow matrix is also needed to have control of the flow in the actual
links when going through the Ford Fulkerson algorithm.

The maximum flow class is supposed to be called from the simulation class. As
arguments in call to the maximum flow class, number of nodes and number of
links have to be sent as arguments in order to initialize the capacity matrix,
the flow matrix, the color matrix and the link file reading. The source and sink
node must also be sent as arguments in order to get the class a knowledge
about from which, and to which node the maximum flow is to be calculated.
The last argument is the link filename to the actual network. The maximum
flow class has to know which file to read, in order to get the links source and
start node and the different capacities. To summarize this, in a call to the
maximum flow class, these arguments should be sent as arguments:

e Number of nodes.

e Number of links.

The start node in which the maximum flow is wanted to be calculated
from.

The stop node in which the maximum flow is wanted to be calculated to.

The filename to the links for the actual network.

The maximum flow class constructor calls its own method maz flow() in or-
der to run the simulation when a Maximum Flow object is created. In the
maz_ flow method the reading of the link is first performed by the ReadLink()
method. This method is also taking care of a few other other operations than
just reading the link file. One of them is setting up the capacity matrix, which
is described above. Another operation the ReadLink() method is doing, is to
rearrange the node numbers. This is done in order to set the start node to
node 1 and the stop node to the last node in the network. For example, if the
Maximum Flow class is to perform a maximum flow simulation from node 3
to node 7 in a network with 10 nodes, node 3 is switched to node 1, and node
7 is switched to node 10. Now, also the capacity on the link between node 3
and 7 has the capacity on link between 1 and 10. This node and link switch
operation is done in order to reduce the Ford Fulkerson algorithm‘s running
time.

After this, the flow matrix is calculated in the Ford Fulkerson algorithm. This
algorithm incrementing the flow matrix until the target node is colored black
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by the breadth first search method. In other words, to find where to stop
the Ford Fulkerson algorithm and stop incrementing the flow, a breadth first
search algorithm is performed. The Ford Fulkerson algorithm is continuing
incrementing the flow until the breadth first search is finished.

The idea behind a breadth first algorithm is to process all nodes in a given
level before proceeding to next level. As a comparison of this is a depth first
search defined as: process next level as soon as possible. Breadth first search
can be used to test whether an arbitrary graph G with n nodes is connected.
It can also be used to find minimum length paths in an unweighted graph
from a fixed node n to all other nodes. Dijkstra‘s shortest path algorithm for
weighted graphs used in the number of hops algorithm can be considered as a
generalization of the breadth first search. An array called color/] is needed by
the breadth first search. This array take care of coloring of nodes. If the source
node is colored black, the breadth first search is finished.

To give an example is figure 7.8 showing a network which the maximum flow
from node 1 to node 9 is wanted to be calculated.

Figure 7.8: A network which the maximum flow is wanted to be calculated.

Figure 7.9 shows the results on running the maximum flow simulation on the
network illustrated in figure 7.8.

4/3

5/5
E—

%
ol

MaxFlow = 11

Figure 7.9: The result of running the maximum flow algorithm on the network
in figure 7.8 , also showing the path for the maximum flow. The
x/y is can be read as capacity/flow.
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This max flow algorithm is not considering the node capacities, and in the most
large-scale networks it is not the link capacities which will limit the flow trough
the network, but actually the node capacities. So the max flow algorithm is
not completed in this point of view. Furthermore, work on the platform can be
including the node capacities in the calculation of the maximum flow trough
a network.

7.7 The Number Of Hops Class

The number of hops algorithm finds the shortest distance between all nodes in
the given network. It calculates a n - n distance matrix (where n is the number
of nodes), showing the shortest distance between all the nodes. Many different
algorithms, to find the shortest path from one node to another, are existing.
The two most popular algorithms are Dijkstra’s Algorithm and Bellman-Ford’s
algorithm.

The complexity of Dijkstra’s algorithm is n?, and the complexity of Bellman-
Ford’s algorithm is m - n, where m is the number of links and 7 is the number
of nodes. It is chosen to use the Dijkstra’s algorithm, since all the networks
considered in this platform have m > n.

The constructor for the NumberOfHops class has three input arguments
NumberOfHops(char* LinkFile, unsigned long NOL, int NON). The first is a
pointer to the link file, the second is the number of links in the file, and the
third is the number of nodes. For huge networks the number of links increases
rapidly, for a full connected 1500 nodes network there is above one million
links, which give the reason for making the data type an unsigned long.

The first thing that happens in the NumberOfHops class is reading the links
from the link file into arrays. The links are all assumed to be bidirectional, as
in the maximum flow algorithm, a matrix called BidirectedLinks containing all
the links in both directions is made. Afterwards, an array of the nodes used is
made.

The algorithm is explained by use of an example. Let’s take a look at a wheel
graph with 10 nodes as in figure 7.10.

A connection matrix ConnectionMatriz like table 7.1 is made from the Bidi-
rectedLinks array.

What is needed to calculate here is a shortest distance matrix, so a matrix
DistanceMatriz is initialized and set equal to the connection matrix.

Now the actual algorithm starts. At first, it finds the node with the shortest
distance to the start node, it is called NearestNodeNumber. For that node it
finds out which nodes are connected to it. It then updates the distance matrix
for the nodes connected to NearestNodeNumber. This is done for all nodes (n
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Figure 7.10: A 10 node wheel graph.
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Table 7.1: Connection matrix for a 10 node wheel graph.
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times) and then the distance matrix will look like table 7.2.

Nodes | 1 |2 | 3| 4|5 |6 |78 9]10
1 o|(1}2 132|112 3]|]2]1
2 170 1 |loo|oo || 1 |o0]|00]| 0
3 co| 1|0 1l loo|joo|oo| 1 |o0]|
4 o |oo| 1 0 1l |loo|ow|oo| 1 |
5 ||| 1|0 1 ool |oo| 1
6 1 ool |00 | 1 0 1 0|00 | 0
7 ©o| 1l |w|w|ocw| 1|0 |1 |c0]|x
8 0|l 1l |w|w|ow| 1|0 |1]|x
9 ||| 1 |w|w|low| 1|0 1

10 1l |loojow|oo| 1l ||| 1]0

Table 7.2: Distance matrix after one iteration.

A for loop runs n times to update the distance matrix. Every time it runs it
sets a start node and calculates the shortest distance to all other nodes (it
updates one row at a time in the distance matrix). The Dijkstra’s algorithm
then runs n times.

It means that the actual complexity of this algorithm is n3. The only things
happening in the algorithm is adding and comparison, so it only takes a few
minutes for a up to date computer to calculate this algorithm, since n < 1500
for this simulation tool.

When the distance matrix is made (see table 7.3) a variable SumNumberOfHops
is made, containing the sum of all entities in the matrix added together, in this
case it becomes 170.

Nodes |1 2|3|4|5|6|7|8|9]10
1 o(11213|12|1(2(3(2|1
2 110123 (2|1]2]3] 2
3 2111011213212 3
4 312111012321 ] 2
5 2131211]01]2|3]2]|1
6 112132110123 2
7 211121312 |1(0(1]|2]| 3
8 31211123210 1] 2
9 2131211121321 |0|1

10 112(3(2(1(2(3]2]1]0

Table 7.3: Distance matrix when Dijkstra’s algorithm is used.

The MazimumNumberOfHops is found to 3, and finally the AverageNum-
berOfHops is found to 170/90 ~ 1.89.
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These are the results for this simulation, and they are written on the screen
when the simulation is finished and saved in the corresponding .res file.

This algorithm also calculates the maximum number of shortest paths a node
has to another. The maximum number of shortest paths is used for the traffic
load algorithm, and it will be explained in the next section.

Every second during the simulation, the number of hops algorithm updates
the status bar. The status bar implementation will be described in section 7.9

During the simulation the user can press 'p’ to pause the simulation and press
'q’ to quit the simulation before it is finished. When the simulation is paused,
the user can continue the simulation by pressing any key, or quit the simulation
by pressing 'q’.

7.8 The Traffic Load Class

The traffic load simulation measures the load of links and nodes when packets
are send through the network. With this simulation it is possible to simulate
two different sending methods. It can simulate one node sending a packet to
another node, or one node sending a packet to all other nodes.

In the one-to-one simulation, it finds the shortest path between the nodes and
updates the link- and node load for the links and nodes used. This is done
with Dijkstra’s algorithm in the same way, and of the same reasons as in the
number of hops simulation.

In the one-to-all simulation, the simulator also finds the shortest path to all
nodes from the transfer node and updates the link and node load for the links
and nodes used to transfer the packet. If there is more than one shortest path
from the transfer node to a receiving node, it will send the packet through the
path with the lowest load. If there is more than one shortest path and more
than one path with the lowest load, the algorithm must decide which path to
send the packet by looking at which path all other nodes is able to use.

The constructor for the TrafficLoad class has seven input arguments, Traffi-
cLoad(char* Network, int StartNode, int StopNode, int NON, unsigned long
NOL, int MazNOH, int MaxNOSP). The first is a pointer to the network to
be simulated, the second is the node to send the packets from (transfer node),
the third is receiving node (if a one-to-all simulation is wanted the value is 0).
The fourth input argument is the number of nodes, the fifth is the number of
links, input argument six is the maximum number of hops and the last one
is the maximum number of shortest paths. The last two input arguments are
found in the number of hops simulation, which means that the number of hops
algorithm has to be ran before the traffic load algorithm.

The traffic load algorithm will be explained by the same wheel graph as used
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in the number of hops section. (See figure 7.10)

The first thing to happen in the simulation is reading the network from the
node and link files. The nodes are stored in a matrix Nodes where the input-,
output- and transit load has a column each, it is reflecting the file structure.
The links are again stored in a BidirectedLinks variable, also with columns for
the load, and again the connection matrix and distance matrix is made. In
this algorithm a LinkNr matrix is made, containing the link number used to
connect the two nodes. It is shown in table 7.4.

Nodes | 1 |2 |3 |4 |5 |6 |7 8]9]10
1 o|1,010}]0]2]0]0]|0]3
2 6/ 0(4]0|0]0|5]0|O0]O0
3 0|19, 06 |0O]O0O|O0O|7 01O
4 oOo|j0(22,0 (8 ]0]0[0|9]0O0
5 0|0 |0(23]01]10] 0] 0] 0|11
6 170 (0] 0|25 0[12] 0|00
7 0(200(0 101|271 01(13] 0] 0
8 0012200 ]01(28(01(14/|0
9 0| 0,024 0]01]01(29| 0|15
10 18 0 (0|0 |26] 0| 0] 0|30]|O0

Table 7.4: LinkNr matrix showing the link number used to connect the two
edges for a 10 node wheel graph.

Table 7.4 is for later use, it will save the program for a lot of computations
when he or she is updating the link load.

For this simulation all the shortest paths going from the transfer node to all
receiving nodes must be known. This is done by use of a 3 dimensional array
NodeMatriz, where all information is gathered. The x-axis contains the nodes
respectively, in the y-direction is the different layers, each which contains a
shortest path from the receiving node to the start node. This dimension has
the length of maximum number of shortest paths, which is input argument
seven (it is calculated in the number of hops algorithm).

In the z-direction, the nodes are used as transit nodes for getting to the re-
ceiving node. This 3 dimensional array is shown in table 7.5 for the 10 node
wheel graph, where node 1 is the transfer node, sending one packet to all other
nodes.

As seen in table 7.5 node 4 and 8 has three different shortest paths. For node
4 the shortest paths are: 9-10-1, 5-10-1, 5-6-1 and 3-2-1, and for node 8 the
shortest paths are: 9-10-1, 7-6-1, 7-2-1, 3-2-1. Two counter arrays are keeping
track of how many paths and number of transit nodes that have been filled in
the 3 dimensional array for each node, they are shown in table 7.6.

The algorithm starts by finding the nearest nodes to the start node. It is node
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Entity || 1 2 31 2 31 2 3|1 2 3

Node Layer 1 Layer 2 Layer 3 Layer 4
1 0 0 0(0 0 0(0 0 00 0 0
2 1 0 0(0 0 0(0 0 00 0 0
3 2 1 0(0 0 0(0 0 00 0 0
4 9 10 115 10 115 6 13 2 1
5 10 1 06 1 0(0 0 0(0 0 0
6 1 0 0(0 0 0(0 0 00 0 0
7 2 1 06 1 0(0 0 0(0 0 0
8 9 10 17 6 1|7 2 13 2 1
9 10 1 0(0 0 0(0 0 00 0 0
10 1 0 0(0 0 0(0 0 00 0 0

Table 7.5: A 3 dimensional array (NodeMatrix) containing all paths from all
nodes to the transfer node.

Node | LayerCounter | EntityCounter
1 0 0
2 1 1
3 1 2
4 4 3
5 2 2
6 1 1
7 2 2
8 4 3
9 1 2

10 1 1

Table 7.6: The counter arrays for NodeMatrix.
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2, 6 and 10. It then updates the node input- and output load for these nodes
and the output load for the transfer node. It also updates the link load for the
links used (link 1, 2 and 3), it is here the LinkNr matrix is used to find the
correct link to update.

For each of these nodes (2, 6 and 10) the algorithm finds all the nodes connected
to it, as in the number of hops algorithm. But here is also all the paths with
the same distance from the transfer node found. For node 2 it will update the
path in NodeMatriz for node 3 and 7 to go through node 2 to node 1. Node 6
is updating node 5 and 7 and node 10 is updating NodeMatriz for node 5 and
9.

Then the node with the shortest distance is found to be node 3. It will then
go trough all its layers in NodeMatriz to find the path with the smallest load.
There is only one shortest path to node 3, so it will use that and then update
the load at the links and transit nodes used to get there.

Only nodes with one shortest path will receive a packet at this first iteration.
If there is more than one shortest path, all paths to all other nodes must be
taken into account. Therefore, an array Nodes WithMore ThanOneShortestPath
contains all the nodes with more than one shortest path.

When the load for all paths for all nodes with only one shortest path is updated
(node 2,3,6,9,10 see LayerCounter in table 7.6), a look at which paths the rest
of the nodes can use must be performed.

An array NodeUse is made to count how many times each node can be used as
a transit node when sending a packet to all nodes with more than one shortest
path. All nodes in Nodes WithMore ThanOneShortestPath finds all its possible
paths and counts up NodeUse for all nodes used in all paths. This is done to
decide which path should be used to send to the nodes. In the 10 node wheel
example, NodeUse will look as shown in table 7.7.

Now a decision about which path must be used to send a packet to the nodes in
NodesWithMoreThanOneShortestPath is made. Starting with the nodes with
the lowest distance to the transfer node, which is node 5 and 7. There are two
different paths to choose between to get to node 5. This is 1-10-5 and 1-6-5.
The algorithm finds the node with the highest load for each layer, and then
chooses the layer with the lowest highest load to update. If two paths have the
same lowest load the path with the node with the lowest value in NodeUse is
chosen. This path might be the path which can use fewest nodes, and therefore
the most optimal. When the path is found is the node- and link loads for all
the nodes and links in the path are updated.

When a packet is sent to a node, all paths to that node will be subtracted in
NodeUse, because a packet to the node is sent, and therefore it should not be
taken into consideration when the algorithm finds the paths to the nodes that
not have been updated yet.
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Table 7.7: The NodeUse array is showing how many times all nodes can be
used as transit nodes for the nodes with more than one shortest
path (node 4, 5, 7 and 8).

The two final nodes to be updated are nodes 4 and 8, since they are most far
away from the transfer node. The paths to those nodes are found in the same
way as the paths to node 5 and 7.

This was all about how to simulate one-to-all traffic, if it is wanted to simulate
sending traffic from one node to another, it is done in the same manner, just
then there is no need for a 3 dimensional array, because it is not necessary to
find more than one path.

At the end of the algorithm the results are found as in the number of hops
algorithm, and the results are saved to the .res file for the simulated network,
and the loads of the links and nodes is written to the .Ink and .nod files.

During this simulation the status bar is updated every second, and the user
can pause or quit the simulation as in the number of hops simulation.

7.9 The Status Bar Class

The status bar is implemented to give the user an idea of the time needed for
a specific started simulation. It is good for the user to see the progress in the
simulation. The user must have a feeling of something is happening, instead of
that the user maybe will think that something is wrong if the simulation takes
10 minutes, and nothing is happening on the screen.

The status bar is implemented as a class. All the three simulation classes, max-
imum flow, traffic load, and number of hops have calls to this class throughout
in the algorithms. This in order to create, update and reprint the status bar
to a screen.

When calling the update status bar method in the status bar, two arguments
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has to be sent. The first is a variable called tot, which is set according to the
for loops specifications. A simple example of setting the tot variable is that if
there are three for loops that counts from zero to a variable NumberOfNodes,
tot is set to 3 * NumberOfNodes. This means that this tot has to be calculated
in the specific simulation classes and sent as arguments to the status bar. The
other variable the update status bar method needs as argument is a counter,
cnt, in which the specific algorithm in the simulations have to count. In the
example mentioned above, this counter has to be incremented in the for loops
and have to be equal to tot when the for loops is finished. In other words,
the first call to the status bar in the beginning of the algorithms the cnt is
set to 0, and it should be counted up to the same number as tot in the end
of the algorithm. In the number of hops class a status bar object is made in
the start of the algorithm. And the status bar method update is called for the
first time with tot = 4 - NumberO f Nodes + NumberO f BidirectedLinks +
(NumberO f Nodes - NumberO f Nodes) and c¢nt = 0. Then a status bar should
appear at the screen for the first time. The status bar is then repeatly updated
throughout the algorithm with cnt incremented such that the status bar shows
the progress. When cnt = tot the status bar shows 100% and the simulation
is finished.

7.10 The Plotter

In order to visualize the results, a plotter tool is also developed and integrated
with the simulation platform. From the simulator menu, the user can plot
results of saved networks and compare the difference between them. Moreover,
these plots can be saved as images in PNG format. Since the plotter tool
is based on GUI, Java programming language is used. The reason to choose
the Java technology is that it has developed GUI libraries such as Abstract
Windows Toolkit (AWT) and Swing etc. These libraries support to have a
faster development of GUIs, compared to C++-, for a non advance programmer.

The plotter consists of three classes. The detail of classes and their important
methods is given in the following sections. For the detailed information of all
the class methods, a documentation has been generated using Java Doc utility
and can be found in the enclosed CDROM?2.

7.10.1 PlotApp Class

The PlotApp class is the main class for the plotter and yields the main method
to run the application. In this class an object for the window’s frame is created
and also the window's size and visibility is specified.

2CDROM //Plotterdocumentation
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7.10.2 SimPlot Class

The SimPlot class extends the JFrame which is a Java swing component and
creates the window. The SimPlot class also creates other components such
as menu bar, buttons, combo selection box and canvas to draw the plots.
The constructorSimPlot() initializes all the components. For event handling
an action listener addActionListener() is added to each component, which is
used to perform an action. Furthermore, actionPerformed() method triggers a
certain action.

7.10.3 PlotCanvas Class

The PlotCanvas class provides most of the functionality to the plotter. This
class extends the Canvas component which is added in SimPlot. A Canvas
component represents a rectangular area of the screen onto which the appli-
cation draw something useful. In order to create custom plot drawings, the
paint() method is called to perform custom graphics on canvas. The method
readFile() reads the data saved by simulator from the plotdata.dat file. Other
methods like

setAverageNumberOfHops(), setMazimumNumberOfHops() and similar for rest
of the parameters call the paint() method to draw the plot for its particular

type.

7.11 Summary

The implementation of the driver program and the different classes in the
network simulation platform is described in this chapter. How the classes are
linked together, and which classes that initialize objects of other classes, and
runs the methods for these objects is described in the text. A better picture
of this interaction is given in figure 6.1 on page 31.

During implementation, the Network class is given more functionality than first
planned. The final class became therefore relative big with all its methods and
data members. To get a quick overview is difficult. The class should therefore
maybe be splitted into two smaller, more readable classes. All network editing
functionality could for instance be placed in a seperate class. However, the
Network class is in this project kept as one single class.



CHAPTER 8

PERFORMANCE TEST VS.
ACCEPTANCE TEST

The system acceptance test is a way to evaluate the overall requirements for the
product, that are found in section 4.2 on page 17. The most important reason
for testing the software of the simulation platform is to detect any possible
software error or fault, and to improve the overall quality of the software. In
this chapter the simulation platform’s function’s will be tested. In general the
overall software will be tested, this will also include the menu system and the
status bar, which are the interaction or interface between the user and the
simulation platform.

8.1 Software Testing Strategies

The testing strategies used in this project is to perform tests of single modules
and then performing integration tests. There will be made a test plan for the
"product" which has been developed in order to know, how to test the whole
program and/or modules of it. The test of the simulation platform is meant
to verify the status of the product to conclude how far or close the product
is e.g. to be sent out on the marked to be used by customers in the "real
world." The software will be tested using structural "white box testing" and
functional "black box testing." Many of the tests which will be performed will
occur simultaneously.

8.2 Performance Test

The following sections are the preparation of tests. There will in this project
be performed the integration test all-at-once. This method provides a useful
solution for simple integration problems, involving a small program possibly
using a few previously tested modules. When all modules have been integrated
and tested a system test will be performed. The system test or performance
test will be to load the simulation program and perform stress tests in order
to try determining the failure point of a system under extreme pressure by
simulating as many nodes as the program can handle. This will depend on the

35
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computer’s CPU-power and RAM. A drawback of performing a stress test is
that, this test can easily confirm that the system can handle heavy loads, but
it will maybe not so easily determine if the system is producing the correct
information! This will be discussed at the end of this chapter.

8.3 Test Plan
This section will provide a plan of how the tests will proceed. The following

objects which are presented will be tested, these objects are the use cases from
appendix B on page 108. Each of the user cases functions will now be specified.

8.3.1 Test Case Specification and Procedure
Uses Cases are very important in the test of the software and will in this section

be described how they should be tested. In the description, the expected result
will be included. The following use cases will be described and tested:

1 The user opens a project.

2 The user closes the project.

3 The user specifies a new network in the project.

4 The user adds an existing network to the project.

5 The user opens an existing network in the project.

6 The user removes an existing network from the project.

7 The user makes changes in the network.

8 The user will auto generate a network topology.

9 The user close the active network in the project.
10 The user selects wanted simulation parameters and starts simulation.
11 The user stops the simulation.
12 The platform plots the simulation results from different networks.

13 The platform shows a status bar during simulation.

Each of the use cases will be tested in refer to the requirement specification.
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Test Case 1 - the User Opens a Project

The first test case "the user opens a project" will now be described how to
test. Firstly, the user have to create a new project and then enter the project’s
name. Hereafter, the user must save the project and return to main menu.
Then a project has been created and now it is possible to open it. To open
a project, the choice number 2 must be chosen. There will now be a list of
project to open and there will be the one which has created. For example the
project is called TestCasel, this name must be entered in order to the if a
project can be open.

The above test case has been tested and work correctly. Therefore, this function
in the program has been concluded to work successful.

Test Case 2 - the User Close the Project

The next test case is "the user close the project" will be tested in the way that,
the user choose the menu number 7 in the project menu. This is called "Save
the project and return to Main menu." This will menu function will save and
close the project.

Test Case 3 - the User Specifies a New Network in the Project

In order to specify a network in the project, project must be given, i.e., a
project must is created or opened. Then the user can specify a new network
configuration by choosing the project menu number 1, called "Create a new
network." Thus a network will be specified in a project, the user must enter
a name for the network. Hereafter the number of nodes must be specified and
their capacities. The capacities can either be the same or the individual node’s
capacity can be entered. Now the user must select the network topology which
can be one of the following configurations:

1 Simple ring structure.
2 Fully connected.

3 Wheel structure.

4 Double ring structure.
5 N2Rpq structure.

6 Random generation.

7 Manually.
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The user must. after a selected network configuration select capacities for the
links. Either the same capacity can be assigned to each link or individual
capacities can be entered. Now the user has specified a network in a project.
When leaving the network menu the user chooses "close and save network"
and then it will return to the project menu.

Test Case 4 - the User Adds an Existing Network to the Project

In the project menu. the user can add en existing network to a project, by
choosing the project menu number 4 "Add a network to project." Then network
which are already included in the project will be listed and the ones that can
be selected are listed. The user must then enter the network name in order to
include it in the project.

Test Case 5 - the User Opens an Existing Network in the Project

The user must open an existing network in the project menu, by choosing the
number 2 in the project menu, called "Open a network." Then a list of the
available networks will be presented. A network is added by entering the name
of the network.

Test Case 6 - the User Removes an Existing Network from the
Project

To remove an exiting network from the project, the user chose the menu num-
ber 5 "Remove a network from project." A list of the networks in the project
will be presented and the user can then choose which network(s) to remove.

Test Case 7 - the User Makes Changes in the Network

In order to reconfigure a network, the user must be in the network menu. Here
are the following possibilities which can be changed:

e - Add node.
e - Add link.

e - Change node capacity.

- Change link capacity.
e - Delete node.

- Delete link.

- List network data.
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Test Case 8 - the User will Auto Generate a Network Topology

To generate a network topology automatically, the user must first choose "cre-
ate a new network," see test case 3. Thus, it is possible to chose to generate a
random network, where the links are randomly generated between the nodes.
The user has to set the highest allowed degree of the nodes.

Test Case 9 - the User Close the Active Network in the Project

To close an active network in a project, the user must select number 10 in the
network menu, which is called "Close and save network." This will now return
the user to the project menu, then a network is saved.

Test Case 10 - the User Selects Wanted Simulation Parameters

In order to test which simulations parameters the user wants to simulate a
network configurations must be presented. Then in the network menu, the
user must select the number 8 option "Simulate." Here the following options
will be presented and each of them must be tested.

- Number of hops.
- Traffic load.

- Maximum flow.

Before the traffic load can be tested, the number of hops must be simulated.

Test Case 11 - the User Stops the Simulation

When a simulation is in progress, a simulation can stop or pause by pressing

"p" on the keyboard. In order to continue, the user presses any key and then

simulation will run from where it was stopped. When a simulation is running,

the user can choose to interrupt the program. Thus, to quit the program this
nn

is done by pressing "q" on the keyboard and the simulation will be stopped.

Test Case 12 - the Platform Plots the Simulation Results from Dif-
ferent Networks

To test this use case, the user must be in the project menu. Here, the user
must select option 6 "Plot networks in project." The plot is a Java program
and will take some time to open. The plot window must be closed in order to
return to the menu.
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Test Case 13 - the Platform shows a Status Bar During Simulation

This test case will be tested by running a simulation and then at the same
time seeing the status bar is updating during the simulating. This can only be
tested by inspecting that the time vs. percentage is correct.

8.3.2 Stress Test

In this section, a stress test on the simulation program will be described and
performed. The purpose of the stress test is to test if the tool fulfills the demand
about simulation up to 1500 nodes.

The tool is able to simulate all the different 1500 nodes networks which are have
tested. The simulation time for the number of hops and traffic load simulations
for the most demanding network structure (double ring) is shown in table 8.1
for 300, 600, 900, 1200 and 1500 nodes to see how the simulation time evolves
over number of nodes. The different network topologies are also compared with
max load on 1500 nodes in table 8.1.

The 3 dimensional array, NodeMatriz in the traffic load algorithm, can become
very large. It is initialized to have the dimensions n- MaxNOSP-MaxNOH. If
n is large ~ 1500 the array can have up to 5-10% element and each element has
a size of an integer (4 bytes) we need 2GB of RAM, which is very much. But
the problem is not that big for the most of the networks to be simulated with
this tool. In table 8.1 it is also shown how much RAM is needed to simulate
some common large-scale networks.

Topology NON | NumberOfHops | TrafficLoad | MB RAM
Simulation Simulation needed

Double Ring 300 0:00 min 0:01 min 3.3
Double Ring 600 0:05 min 0:01 min 26.1
Double Ring 900 0:14 min 0:03 min 87.7
Double Ring 1200 0:31 min 2:26 min 207
Double Ring 1500 1:01 min 7:21 min 1618
Ring 1500 0:58 min 0:06 min 8.6
Full Connected 1500 2:42 min 2:22 min 0.1
Wheel 1500 0:59 min 2:49 min 805
N2Rpq, p=750, g=50 | 1500 1:09 min 0:04 min 10.1
Random 1500 1:18 min 0:04 min 1.5

Table 8.1: The simulation time for the number of hops and the traffic
load simulation for different network topologies. At the right the
amount of RAM need to make the traffic load simulation is shown.

The simulation times for a double ring structure are plotted in figure 8.1.

The NodeMatriz array is not the only array to use RAM, but it is for sure this
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Figure 8.1: Plot of simulation times for a double ring structure.

array that can cause memory problems. Not any 2-dimensional array will use
more than 20 MB no matter what network below 1500 nodes which is wanted
to simulate.

It can be concluded that the simulation program can handle 1500 nodes. It
is possible to simulate networks with more than 1500 nodes, but it is what
the simulation program can guarantee to simulate. The amount of nodes is
simulated successful when status bar shows 100%.

8.4 Performance Test Results and Discussion

This section will discuss the results from the user-test for each of the test
cases in the previous section. The test cases which has been performed as
described worked correctly. Though the test case 7 in section 8.3.1 has been
implemented different than described in the use case description, which in
found is appendix B on page 108.

8.5 Acceptance Test

Now the user acceptance test will be performed. The goal with the acceptance
test is to check the system against the "Requirements." Normally it is the
customer who will test the system, not the developer. The customer in this
project is the project group. Therefore, in order to perform the acceptance test,
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the customer or user of the system will be the project group. Unfortunately,
at this point there will usually not be a chance of changing big errors.

The acceptance test has been performed by using the program in general.

8.6 Summary

The tests has been carried out in an iterative process, a module has been
programmed, then tested to detect faults, which then has been corrected by
reprogramming the module. The performance test showed that the individual
user case work as defined.



Part 111

Simulations and Analysis of
Networks

63






CHAPTER 9

NETWORK DESCRIPTION AND
SIMULATION

This chapter describes different network topologies. These are described and
then simulated using the platform. An analysis is performed according to some
of the parameters defined in appendix A.1. The topologies described are a
simple ring, a fully connected, a Petersen, a double ring and a wheel structure.
The ring and the fully connected structure are compared in the first section,
since these structures are a sort of worst and best case of node connections.
The graphs are analysed, and the platform is used for simulating the graphs
in order to compare the platform simulation results against the analysis.

9.1 Ring Structure vs. Fully Meshed Structure

Figure 9.1 illustrates a 10 node ring, and a 10 node fully connected graph.

10

N

@ (b)

Figure 9.1: A 10 node ring and a fully meshed structure.

The ring structure uses 10 links to connect 10 nodes. The fully meshed struc-
ture used 45 links, which can be calculated by equation 2.1 on page 7. In the
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platform a ring structure is generated by choosing make a ring structure on
a 10 node network. The platform is connecting the links as in figure 9.1 (a).
The fully meshed structure as in figure 9.1 (b) is generated in the platform
by choosing make a full mesh structure on a 10 node network. Looking at the
platform‘s link file it can be seen that the platform is connecting the links
correct.

Both of the graphs are simulated in the platform for number of hops, maximum
flow, and traffic load by letting one node sending packets to all other nodes.

Since both graphs are symmetric, it does not matter which node is chosen
as start and stop node in the maximum flow simulation. The capacity is for
simplicity chosen to be 1 in each of the links. Maximum flow for the ring graph
is then 2, it is a two degree graph. Maximum flow for the full meshed network
becomes 9. All nodes are connected to all other nodes, then it is obvious that
the maximum flow becomes 9. The maximum flow simulation works properly
on these two graphs.

SumNumO f Hops
NumberO f Nodes - (NumberO f Nodes — 1)

AvgNumO fHops = (9.1)

The sum of number of hops in the ring graph becomes 250. A look at figure 9.1
to find number of hops from one node to all other nodes gives a number of 25.
The sum of number of hops is then this number is multiplied by 10 nodes since
the ring graph is symmetric. Maximum number of hops is 5, to send a packet
from node 1 to node 6 in figure 9.1, 5 hops is needed. The average number of
hops becomes 2.778, and can be calculated manually by equation 9.1, giving
the same result. For the fully meshed structure the number of hops simulation
results can be summarized as this:

e Sum number of hops: 90.
e Maximum number of hops: 1.
e Average number of hops: 1.
The traffic load simulation of the ring graph is performed by letting node 1

send out packets to all other nodes. Figure 9.2 shows an example of how the
node one can send out one packet to all other nodes.

From figure 9.2 the traffic load parameters can be found. The following shows
the traffic load parameters for a ring structure versus a fully meshed structure.
The results for the ring come first, and then for fully meshed.

e Maximum input load for nodes: 5 versus 1.

e Maximum output load for nodes: 9 for both.
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Figure 9.2: Traffic load route in a ring structure.

e Maximum transit load for nodes: 4 versus 0.
e Sum input load for nodes: 25 versus 9.

e Sum output load for nodes: 18 for both.

e Sum transit load for nodes: 16 versus 0.

e Average input load for nodes: 2.5 versus 0.9.
e Average output load for nodes: 1.8 versus 0.9.
e Average transit load for nodes: 1.6 versus 0.
e Maximum link load: 5 versus 1.

e Sum link load: 25 versus 9.

e Average link load: 2.5 versus 0.2.

e Links not used: 1 versus 36.

The traffic load simulation results above can be seen as worst and best case for
a 10 node network. The following section is describing and simulating network
structures, which is in the middle of the extreme cases discussed in this section.
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9.2 The Petersen Graph

This section introduces the Petersen graph, and the description is mostly based
on [13]. The Petersen graph has fascinated many graph theorists over the years
because of its appearance as a counterexample in many places.

The Petersen graph was named because of its appearance in 1898 in a paper
by J. Petersen. One of the problem Petersen researched is: Let A be a 2 edge
connected graph where every vertex is connected with three edges. Is it possible
to color the edges in A with 3 colors, and then have two edges, which is incident
with the same vertex to always get different color? Petersen claimed the answer
no to this question, and proved it with the Petersen graph illustrated in figure
9.3.

Figure 9.3: The Petersen graph

The Petersen graph can be illustrated in several representations, possessing 10
nodes, all of whose nodes have degree three, two examples are given in figure
9.4.

Figure 9.4: Different representations of the Petersen graph.

The Petersen graph is a non planar graph, which means that it is possible
to draw this graph with two crossing edges on a paper. The Petersen graph
is also both symmetric and cubic. The girth is defined as the length of the
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shortest graph cycle, and become for this graph 5. The graph diameter is
2. A 10 vertices Petersen graph is the smallest Hypohamiltonian graph. A
Hypohamilonian graph is a graph which is not a Hamiltonian, but whose vertex
deleted subgraphs are all Hamiltonian. If a cycle has the properties that a walk
through the graph (closed loop), visits each node only once, it is a Hamiltonian
cycle. A graph is Hamiltonian if it has a Hamiltonian cycle.

Actually the Petersen graph with 10 nodes is a N2Rpq graph [14] with N =
10, p = 5 and q = 2. In an N2Rpq graph, N is the number of nodes, and p the
number of nodes in each ring (2 rings). Q is a variable which tells the platform
how many nodes a link jump in the inner ring before connecting to a node in the
inner ring of a N2Rpq graph. In the simulation platform a Petersen structure
can be generated by the Create a N2Rpq structure in a network created with
10 nodes. Then the platform will ask for the q. A choice of 2 here will make
a network equal to figure 9.3. To test that the simulation platform actually is
making a Petersen graph, the source and sink node from the link file is listed
in table 9.1.

Link Number | Source Node | Sink Node
1 1 2
2 2 3
3 3 4
4 4 5
5 7 10
6 6 8
7 7 9
8 8 10
9 9 6
10 1 5
11 1 6
12 2 7
13 3 8
14 4 9
15 5 10

Table 9.1: List of Petersen graph generated by the platform.

Comparing table 9.1 with figure 9.3, it can be seen that the platform has
written all links to the link file in an appropriate way.

The number of hops in the alternative paths is also a property. If this number
is relative low, the functionality of a network can be good, even if some links or
nodes breaks down. For the graphs described in this section, the three shortest
routes from a given start node to the others will be shown. This will not be
repeated where number of hops in the three paths is equal.
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Figure 9.5 (a) depicts the situation where the minimum distance in the Pe-
tersen graph is one hop from a start node to a another node. The number of
hops in the three paths are 1, 4, and 4. The alternative paths will have the
same number of hops for any other node where the minimum distance is one.
The number of hops is 2, 3, and 3 for the minimum distance two-nodes, this
is shown in figure 9.5 (b).

Start node Start node

Figure 9.5: Three independent paths in the Petersen graph.

9.2.1 Number of Hops in the Petersen Graph

In figure 9.6 the number of hops is shown for the Petersen graph. The sum of
the number of hops for a Petersen graph is 15. For a 10 node double ring and
a wheel graph the sum of number of hops is 17.

/ Startnode

Py

pSs

2 2

Figure 9.6: Counting number of hops to each node in the Petersen graph.

The Number of hops simulation in the platform simulates the sum of number
of hops, the maximum number of hops and the average number of hops. The
sum of number of hops is 150 for a 10 node Petersen graph, because the number
of 15 found in figure 9.6 has to be multiplied with 10 nodes to find the sum of
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hops in the network. This can be done since the Petersen graph is symmetric.
The maximum number of hops is 2 in a Petersen graph. If a packet is sent
from a random node to another random node, the maximum number of hops
will never exceed 2. The average number of hops can be calculated by equation
9.1.

In the Petersen graph, the average number of hops is 1.667. The simulation
platform gives the following results when simulating number of hops:

e Sum of number of hops: 150.
e Maximum number of hops: 2.

e Average number of hops: 1.667.

The number of hops simulation of the Petersen graph is giving correct results
concerning the number of hops parameter.

9.2.2 Maximum Flow in a Petersen Graph

If a Petersen graph has equal capacities in all of the links, the maximum flow
from one node to another becomes three times the capacities since this graph
has three independent paths. This is true independent of which nodes are set
as start node and stop node for the maximum flow calculation. In the platform
the capacity of the links is all set to three. Running a maximum flow simulation
on this network gives a maximum flow of nine, independent of the choice of
start and stop node to the algorithm. The conclusion is that the maximum
flow algorithm works as expected on the Petersen graph.

9.2.3 Traffic Load in a Petersen Graph

The traffic load is calculated by pointing out a start node and sending out
packets to all other nodes. Figure 9.7 shows how the traffic will flow if node 1
is sending a packet to all other nodes following the shortest path.

From figure 9.7 it can be seen that maximum input load to a node is 3, maxi-
mum output load from a node is 1 and maximum transit load is 2. The output
load will always be maximum 9, because the packets all nodes is receiving the
nodes has to send to another node another place in the network (outside this
report‘s scope). The sum of input load to the nodes is 15, and the sum of the
output load from the nodes is 18. The sum of the transit load in the nodes
becomes 6. Average values is also calculated. The average input, output, and
transit load for the nodes is simply the sum of these nodes input, output, and
transit load divided by the number of nodes. In the Petersen graph is the aver-
age input load to the nodes 1.5, and the average output load 1.8, and average
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Figure 9.7: The traffic load in a Petersen graph.

transit load 0.6. The maximum link load in figure 9.7 is 3, and the sum of the
link load is all the link loads added, and becomes 15. Since there is 15 nodes,
the average link load is 1 for the Petersen graph.

When running a traffic load simulation on the platform with the Petersen graph
structure, the same results appear. Therefore, the traffic load simulation on a
Petersen graph is working.

9.3 The Double Ring Graph

To improve the redundancy in a single ring structure, a second ring can be
added to the main ring. The result is a double ring graph, as shown in figure
9.8.

Figure 9.8: The double ring graph.
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For the double ring graph, there are two situations where the minimum distance
is one hop, figure 9.9 (a) and (b). The number of hops for these is 1, 3 and,
4, and 1, 3, and 3, respectively. Where the shortest path is two hops, there is
also two possibilities: 2, 2, and 5, figure 9.9 (c), and 2, 3, and 4 figure 9.9 (d).
The last one is shown in figure 9.9 (e), here the minimum distance is 3, and
the alternative paths have 3, and 4 hops.

Start node Start node Start node
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Figure 9.9: Three independent paths in the double ring graph

The double ring graph shown in figure 9.8 can be generated in the platform by
creating a network with 10 nodes and choose a double ring structure to connect
the links. The link file generated by the platform is checked against figure 9.8,
and the platform connects the links in a double ring structure. The maximum
flow simulation will not be explained in this section, because it gives the same
results as in section 9.2. The double ring is as the Petersen graph a symmetric
degree 3 graph, and the maximum flow becomes the same.

9.3.1 Number of Hops in a Double Ring

As mentioned in section 9.2, the minimum sum number of hops from a start
node to any other node in the wheel graph is 17. This is calculated by adding
the numbers in figure 9.10.

The sum of number of hops in this graph is 170, it is 17 multiplied by 10 (the
number of nodes). Keep in mind that this can only be done with symmetric
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Start node

2 2

Figure 9.10: Hops in a double ring graph.

graphs. By looking at figure 9.10 there can not be found no more than 3
hops as maximum number of hops. The average number of hops is calculated
by equation 9.1 to be 1.889. The simulation platform gives as expected the
following results when simulating number of hops:

e Sum number of hops: 170.
e Maximum number of hops: 3.

e Average number of hops: 1.889.

9.3.2 Traffic Load in a Double Ring

As in the section 9.2.3 traffic load is calculated by sending packets from one
node to all other nodes. The double ring graph has more than one shortest
path from one node to another, therefore the traffic low can be executed in
not only one embedding. Figure 9.11 shows an example of how the traffic can
flow when sending packets from node 1 to all other nodes.

It can be seen in figure 9.11 that maximum input load to a node is 3, maximum
output load from a node is 1 and maximum transit load is 2. The sum of input
load to the nodes is 17, and sum of the output load from the nodes is 9. The
sum of the transit load in the nodes becomes 8. Some average values can also
be calculated. The average input, output, and transit load for the nodes is
simply the sum of these nodes input, output, and transit load divided by the
number of nodes. The average values are an average input load to the nodes
of 1.7, an average output load of 1.8, and an average transit load of 0.8. The
maximum link load in figure 9.7 is 3. The sum of the link load is all the link
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Figure 9.11: An example of the traffic flow route in a double ring graph.

loads added, and it becomes 17. Since there is 10 nodes the average link load
becomes 1.133 for the double ring graph. The number of links not used is 4.

When running a traffic load simulation on this graph, the result becomes a
little bit different. The results the platform is gives are:

e Maximum input load for nodes: 3.
e Maximum output load for nodes: 9.
e Maximum transit load for nodes: 2.
e Sum input load for nodes: 17.

e Sum output load for nodes: 18.

e Sum transit load for nodes: 8.

e Average input load for nodes: 1.7.
e Average output load for nodes: 1.8.
e Average transit load for nodes: 0.8.
e Maximum link load for nodes: 3.

e Sum link load: 17.

e Average link load: 1.1333.

e Links not used: 6.
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The only parameter which differ from the manual traffic load analysis is ac-
tually the parameter of links not used. The reason for this differ is that the
platform choose another shortest path when simulating the traffic load. The
path, which the platform choose is shown in figure 9.12.

Figure 9.12: An alternative traffic flow route in a double ring graph.

It can be concluded that the platform is performing a traffic load simulation
as good as the manual traffic load analysis performed above.

9.4 Wheel Graph (Mgbius Ring)

The wheel graph with 10 nodes is shown in figure 9.13.

If two links are switched in the double ring graph in figure 9.8, the same graph
as in figure 9.13 actually appears (see figure 9.14).

Where the shortest path is one hop, the two alternative paths have both five
hops for the wheel graph, figure 9.15 (a). There are two situations where the
minimum distance is two, the three paths have 2, 4, and 4 hops, figure 9.15
(b), and 2, 2, and 4 hops, figure 9.15 (c). In the last possibility, figure 9.15 (d),
the number of hops is equal in all three paths, namely 3.

A wheel graph as in figure 9.13 can be generated by the platform. Choose the
links to be coupled in a wheel structure when choosing the link connection.
The link file is checked against figure 9.13, and the platform is connecting the
links in a correct way.
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7

Figure 9.13: The wheel graph (Mabius graph).

Figure 9.14: The equivalent wheel graph.
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Figure 9.15: Three independent paths in the wheel graph.
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9.4.1 Number of Hops in a Wheel Graph

The minimum number of hops from a start node to any other node in the
graph is shown in figure 9.16, the sum of these distances is 17.

Start node

1

Figure 9.16: Hops in the wheel graph.

The sum of number of hops in this graph is 170, it is 17 multiplied by 10
(the number of nodes). Again, it is important to have in mind that this can
be done because the wheel graph is a symmetric graph. By looking at figure
9.16, there can not be found more than 3 hops as maximum number of hops.
The average number of hops is calculated by equation 9.1 to be 1.889. The
simulation platform gives as expected the following results while simulating
number of hops:

e Sum of number of hops: 170.
e Maximum number of hops: 3.

e Average number of hops: 1.889.

The number of hops simulation results are similar to the simulation for the
double ring.
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9.4.2 Traffic Load in a Wheel Graph

The traffic in a wheel graph while node 1 is sending packets to all other nodes
can be routed as in figure 9.17.

Figure 9.17: Traffic load in the wheel graph when node 1 is sending a packet
to all other nodes.

When analysing the traffic load in figure 9.17, almost the same results as in
the double ring traffic load analysis is calculated. The only difference is the
number of links not used, which becomes 6 in figure 9.17. The platform is also
routing the traffic as in figure 9.17 when simulating traffic load, and gives the
results as expected, including that links not used are calculated to 5.

9.5 Comparing the Different Network Structures

The different networks described in this chapter are here compared by using
the plotting tool in the platform. The comparison is done in order to get a
better view of the advantages and disadvantages of the different networks.

In all the plotting figures NO is the ring structure, N1 is the Petersen Graph,
N2 is the double ring, N3 is the wheel graph and N4 is the full mesh structure
discussed and simulated in this chapter.

In figure 9.18 the maximum number of hops is plotted for all the structures.
The average number of hops is plotted in figure 9.19. It is worth mentioning
that the Petersen graph has a low number of hops while the numbers of links
is the same as in the double ring and the wheel graph. The plot of the sum of
number of hops is found in appendix D on page 120.
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Figure 9.19: Average number of hops.
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The maximum input load for the nodes in the networks is shown in figure
9.20. This figure is also showing the maximum link load, and the maximum
transit load for the nodes is also equal except for the full mesh structure which
becomes 0. The plots for maximum link load and maximum transit load is
found in appendix D on page 120.
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Figure 9.20: Maximum input load for nodes.

The average input load is plotted in figure 9.21. The plots is shows that the
Petersen graph gives the best results except for the full mesh structure.
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Figure 9.21: Average input load for nodes.

The plots for average link load and of links not used is found in appendix D on
page 120. Figure D.6 on page 122 in appendix D shows the numbers of links
not used for all the networks. For the full mesh structure this number becomes
36, which means that there is a high number of links not used. In chapter 10
on page 85 large-scale networks is simulated, and then the numbers of unused
links becomes a very high number for full mesh structures. This is the main
reason why a full mesh structure is rarely, or maybe never, used practically in
large-scale networks.
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CHAPTER ]_O

LARGE-SCALE SIMULATIONS USING
THE PLATFORM

Until now, only networks with a small amount of nodes have been tested
in the simulation platform. According to the requirements set earlier in the
report, the platform should be able to simulate large-scale networks of up
to 1500 nodes. Different topologies with 1500 nodes will be simulated. The
next section compares the properties of these different networks according to
the simulation results. After this a case study about the 1500 nodes N2Rpq is
described, concentrating on the number of hops parameter simulation choosing
some different values of the variable q.

10.1 Simulations of Different 1500 Nodes Networks

This section describes the simulation of different network containing 1500
nodes. The structures simulated are a simple ring, fully connected, double
ring, wheel, N2Rpq and a structure with random generated links. In the next
section, the simulation results are compared using plot.

10.1.1 Ring Structure

A 1500 node network is created, the capacity is set to 1 on all nodes and all
links for simplicity. The maximum flow simulation is done at first. The result
of this simulation becomes 2, independent of the choice of start and stop node.
The result is the same as for a 10 node ring, which is expected. The maximum
flow simulation is executed in order to test if the platform gives the same
results.

The number of hops simulation is then executed. This simulation takes a short
time to process, dependent of which CPU power which is available on the
system the platform is running on. The number of hops simulation results
given by the platform are:

e Sum number of hops: 843 750 000.
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e Maximum number of hops: 750.

e Average number of hops: 375.25.
In section 9.1, the maximum numbers of hops for a 10 node ring is simulated
to be 5, this is the same as w. For the 1500 node ring structure the

same results appears, and this can be an argument in to prove that the number
of hops simulation is calculating the correct maximum numbers of hops.

A traffic load simulation is performed on a computer in which fulfill the hard-
ware requirements set in section 7.8 on page 48.

10.1.2 Full Mesh Structure

A full mesh network of 1500 nodes is generated as in section 10.1.1, but choos-
ing full mesh structure to connect the links. The link capacity is for simplicity
set to 1 for all of the links. A maximum flow simulation gives a result of 1499,
which is correct according to equation 10.1. Equation 10.1 is only valid for full
mesh structures.

MazFlow = (NumberO f Nodes — 1) - LinkCapacity (10.1)

The number of hops simulation on this full mesh network gives the following
results:

e Sum number of hops: 2 248 500.

e Maximum number of hops: 1.

e Average number of hops: 1.
These results are not surprising, the sum of number of hops is actually the
same as 2 times the number of links according to equation 2.1 on page 7. This

is caused by the fact that the links are bidirected. Furthermore, the traffic load
simulation is performed.

10.1.3 Double Ring Structure

A 1500 nodes double ring network is generated. The capacity is also here set
to 1 for all links. A maximum flow simulation gives a result of 3, the same as
for a double ring with 10 nodes.

The number of hops simulation gives the following results:

e Sum number of hops: 423 000 000.
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e Maximum number of hops: 376.

e Average number of hops: 188.125.

10.1.4 Wheel Structure

The links are connected by choosing wheel structure when connecting the
links.All the link capacities are set to 1. A maximum flow simulation gives
a result of 3 since it is a three degree structure.

The number of hops simulation gives the following results:

e Sum number of hops: 422 998 000.
e Maximum number of hops: 375.
e Average number of hops: 188.125.
These results are almost the same as in double ring, "only" 2000 hops less in

sum numbers of hops and 1 less in maximum numbers of hops. The traffic load
simulation results are shown in section 10.2.

10.1.5 N2Rpq Structure

Here the links are connected by choosing N2Rpq structure, and the q set to 50.
The link capacities are set to one, and again the maximum flow is 3 because
the structure has a degree of three.

The number of hops simulation gives the following results:

e Sum number of hops: 39 574 500.
e Maximum number of hops: 31.

e Average number of hops: 17.6004.

10.1.6 Random Generation of Links

When choosing random generation while connecting the links the links are
connected randomly to the nodes. The simulation results will of course differ
in such networks. So the results are here just listed to test that the platform
is able to simulate a random network. Maximum degree of the nodes were set
to 3. A maximum flow simulation from node 1 to node 1500 is calculated to
be 9 when a capacity of 3 is chosen on the links.

The number of hops simulation gives the following results:
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e Sum number of hops: 19 551 900.
e Maximum number of hops: 15.

e Average number of hops: 8.69554.

These numbers are difficult to analyse. An option could be to read the link file
and analyse the network for numbers of hops. This is a very time consuming
analysis considering that the network has 1500 nodes and 2239 links, it is not
appropriate to perform here.

10.2 Comparing the Different Network Structures
In section 10.1, a simulation of different 1500 nodes networks is performed.
This section shows a comparison of these networks. In all the plots NO are the

ring, N1 the N2Rpq, N2 the double ring, N3 the wheel, N4 the random link
generation, and N5 the full mesh.

10.2.1 Number of Hops

Figure 10.1 is the maximum number of hops plotted for each of the networks
simulated in section 10.1.
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Figure 10.1: The maximum number of hops for 1500 nodes networks.

Figure 10.2 shows the average number of hops plotted for the same networks.

The sum number of hops simulation results can be found in appendix E on
page 123.
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Figure 10.2: The average number of hops for 1500 nodes networks.

10.2.2 Traffic Load
All the traffic load simulations are simulated by letting node 1 sending out

packets to all other nodes in the network. Maximum input load for nodes is
shown in figure 10.3, and average input load for nodes is shown in figure 10.4.
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Figure 10.3: Maximum input load for nodes for the 1500 nodes networks.

The sum of input load for nodes can be found in appendix E on page 123 in
figure E.2. The maximum transit load for nodes is shown in figure 10.5.

The average and sum transit load for nodes are found in appendix E, figure E.4
and E.3, respectively. The link load parameters are almost equal as the input
load for node parameters, but the plotting results is found in figure E.5, E.6,
and E.7 in appendix E on page 123. The number of links not used is shown in
figure 10.6.

A plot of the maximum flow simulation results can be seen in appendix E on
page 123, figure E.8.
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Figure 10.4: Average input load for nodes in the 1500 nodes networks.
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Figure 10.5: Maximum transit load for nodes in the 1500 nodes networks.

122751.0

[ N-O  Ring

[} N-1  MZRpg

[} N-2  DoubleRing

[} N-2 itheel

[} N-4  Random

[} N-5  Fulltesh
10 7230 624.0 627.0 J07.0
MO M1 Mz [k} N4 M5 Mets

Mumber_of_links_not_used

Figure 10.6: Links not used in the 1500 nodes networks.
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10.3 Case Analysis of the N2Rpq Structure

In section 10.1.5, a 1500 nodes N2Rpq with q set to 50 is simulated. In this
section different 1500 nodes N2Rpq structures are simulated to see if the per-
formance can be optimized according to the q parameter. First a 1500 nodes
N2Rpq network with a q set to 2 is simulated, a q with value 1 is not consid-
ered since it gives a double ring structure. The maximum flow is not considered
since this parameter is independent of the of the g-parameter.

The N2Rpq Structure with q set to 2 is first tried to simulate. The number of
hops simulation gives the following results:

e Sum number of hops: 214 305 000.

e Maximum number of hops: 190.

e Average number of hops: 95.3102.
These results are not as good as in 10.1.5. This is the minimum value of q, now

the maximum value of q is considered, which can be determined by equations
10.2 and 10.3 [14]:

—2
g<?

if p is even number (10.2)

g< 2=

if p is odd number (10.3)

The value p is the number of nodes divided by 2, p = 750. This is an even
number so equation 10.2 is used to find maximum q. This equation gives a
maximum q equal to 374. The number of hops simulation on q = 374 gives the
following results:

e Sum number of hops: 21 319 500.

e Maximum number of hops:189.

e Average number of hops: 94.8145.

Different values of q are plotted for maximum numbers of hops in figure 10.7.

The average number of hops for the same structures as in figure 10.7 is shown
in figure 10.8.

Both figure 10.7 and 10.8 are showing no single optimal q parameter. But there
are indications that q around 25 or around 100 can give a optimized N2Rpq
structure according to the number of hops parameter.
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Figure 10.7: Maximum numbers of hops for different values of q for the N2Rpq,
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10.4 Summary

A goal of being able to simulate networks with 1500 nodes is set for this
simulation platform. The platform is tested for the large-scale use with different

network structures of 1500 nodes. These simulations is performed in a Windows
OS on a regular desktop PC, with 1.8 GHz CPU and 512 MB of RAM.

The traffic load simulation for a 1500 node double ring network requires most
hardware resources, around 1.6 GB of memory according to table 8.1 on
page 60. To make this simulation run on the given computer, a part of the
hard disk is allocated for “virtual RAM”. The simulation time of the network
is about 12 minutes. The double ring has the highest demand to memory be-
cause of the large amount of shortest paths in the network structure.

Not all of the results given here is checked to be true and some of them are not
easy to calculate by hand, especially the results from the random generation
of links.

In the next chapter possibilities for simulating even larger networks using the
simulation platform will be introduced.



CHAPTER ]_ 1

LARGE-SCALE NETWORK
SIMULATIONS

In this chapter, the feasibility of large-scale network simulation is discussed.
The demand of being able to simulate networks of 1500 nodes must said to be
fulfilled. But, what if even larger networks should be simulated, then a regular
desktop PC reaches its limitations. What are hardware and software limitations
of large-scale network simulation on PCs will be answered in this chapter.
Moreover, a suggestion will be made according to how it can be possible to
bring large-scale network simulations.

11.1 Network Simulations and its Limitation

Simulation has always been an indispensable tool in the design and analysis
of networks. Due to the performance limitations of the simulators, usually
simulations are done for small network and for short time scales. A PC meets
its limitations while conducting large-simulations. As increasing the nodes,
the demand of computation power increases proportionally. If the power of a
regular desktop PC is insufficient, a super computer, or Linux cluster could be
used for running the simulation.

e Use existing super computer.

— Not easy to access.

— Very expensive to buy.

— Few resources are available.
— Difficult to extend it.

e New area of parallel computation (Linux clustering).

— Faster computation.

— Less required memory.

— Cheaper solution.

— More technical support available.

— Easy to extend it.
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11.2 An Appropriate Choice

By looking at the mentioned choices in the previous section, the Linux clus-
tering can be more suitable for the case with large-scale network simulations.
One of the big advantages of Linux clustering is a cheaper and faster compu-
tation solution, compared with the price and power of super computers. Super
computers tend to be very expensive and commonly not offered by small or
medium organizations and institutions with limited funding resources.

Linux OS is freely available and open source codes, which makes it even more
flexible and appealing choice. More and more business, and particularly aca-
demic world is joining Linux cluster community. Since Linux OS is a part of
open source code, there is significant technical support available as well at low
cost. One of disadvantages of using clustering is complex programming.

In the following section, Linux clusters is described with more details.

11.2.1 Using Linux Clusters

In its simplest form, a cluster is two or more computers that work together to
provide a solution [15]. The main idea behind clusters is to join the computing
power of nodes involved to provide higher scalability, more combined computer
power, or to build in redundancy to provide higher availability. Computation
power is increased with the coordination of work being done on different clus-
ter’s nodes. This leads in complex connectivity, configuration and sophisticated
inter process communication between the nodes of cluster.

There are different types of Linux clusters available, for a high performance
computation Beowulf Linux cluster is very famous. Beowulf cluster is a multi-
computer architecture that can be used for parallel computations. It consists
of one head node and rest computer nodes connected together via Ethernet
or other networks. The system can be build on x86 computer architecture
(PC) capable of running Linux OS, and other standard Ethernet adapters
and switches. There is Beowulf type of software available, Beowulf is just one
type of Linux Cluster. The main software components are, Linux OS, PVM
(Parallel Virtual Machine) and MPI (Message Passing Interface). The head
node controls the whole clusters and also serves files to compute nodes. PVM
is a message passing system that enables a cluster computes to be used as a
single distributed memory parallel computer. This network also referred as the
virtual machine.

In order to run simulator software on a Linux cluster it must be programmed
using parallel programming. And among the components of a parallel system,
there must be a suitable language. The basic requirements for parallel pro-
gramming are:
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e Ability to spawn tasks on other nodes’ processors.
e Sharing the data between tasks.

e Task co-ordination, via synchronization.

To achieve above mentioned goals, C++ uses PVM library.

11.3 Summary

As mentioned in section 10.4 on page 93, the simulation platform’s require-
ment of being able to simulate 1500 nodes is fulfilled. Even if it is running
on a regular desktop computer. A Linux cluster will probably speed up the
simulation process, and will may be the only solution if larger networks should
be simulated. However, a performance test of the platform for network with
more than 1500 nodes is not covered in this report.



Part V

Evaluation and Discussion

97






CHAPTER ]_2

CONCLUSION

The purpose of this project was to make a simulation tool to simulate large-
scale network structures. The definition of large-scale networks is not very
precise, however the requirements for this tool was set to be able to simulate
minimum 1500 nodes.

The tool is able to auto generate 6 network structues. These are: Simple ring,
fully connected, wheel, double ring, N2Rpq, and random structure. Methods
for generating other structures can easily be added. It is possible to for man-
ually link generation.

Three different siremulations are conducted in the tool. Those are the maxi-
mum flow, the Number of Hops and the traffic load. The maximum flow sim-
ulation finds the maximum flow in the network, where each link is given a
capacity. This simulation uses a breadth first algorithm, where the computa-
tion time is low, about 1-2 seconds, no matter how large the network is. When
the platform is implemented, only the capacities of the links are considered,
the capacities of the nodes are considered to be infinite.

In the number of hops simulation, the shortest distance from one node to
any other node can be found. The algorithm which was used is Dijkstra’s
shortest path algorithm. The output of the number of hops simulation is the
sum of hops, the maximum, and the average number of hops in the given
network. The simulation time depends upon processing power of CPU, the
number of nodes in the network and the network structure. The simulation
time using a PC with a 1.8 GHz CPU and a fully connected network (which is
the most demanding network structure for this simulation) with 600 nodes is 9
seconds. For networks with 1500 nodes the simulation time will be maximum 2
minutes and 42 seconds. The simulation time of the number of hops algorithm
is satisfactory.

In the traffic load simulation there are two options. One option is to send
one packet from one node to another, the other option is to send one packet
from one node to all other nodes. When one packet is sent from one node to
another, the simulator finds the shortest path and sends the packet through
that path. When the simulator sends one packet to all nodes, the simulator
also finds the shortest path from the sending node to all other nodes, but if
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there is more than one shortest path the simulator must decide which path to
choose by looking at the load at each link and node. The algorithm used to
find the shortest path is Dijkstra’s shortest path algorithm, and the algorithm
used to decide which path to use is developed by the group. The output of
the traffic load simulation is the sum, average and maximum node- and link-
input, output and transit load for the given network.

The simulation time of the traffic load simulation depends on the number of
nodes, the maximum number of hops and the maximum number of shortest
paths from any node to the sending node. It also depends on how much RAM
the computer has. The simulation time, using a computer with 512 MB of
RAM and a double ring structure (which is the most demanding commonly
used network structure for this algorithm) with 1500 nodes is 7 min and 21
seconds.

A 1500 node double ring traffic load simulation demands at least 1.6 GB of
RAM. If the computer has less, the operating system starts to use the hard
disk as RAM, and the access time of the hard disk is much longer that to
the RAM. If the computer has enough memory, the simulation time will be
shorter, but the access time measurements are not established. The maximum
simulation time of 7.21 minutes for a 1500 node network seems satisfactory.

These simulations work perfect for all the networks tested, which primarily are
the ring-, double ring-, wheel-, full mesh-, and N2Rpq graphs. They also work
for small manually configured in networks where the maximum flow, shortest
path, and load easily can be calculated by hand.

The tool is programmed using C+-+ and the user interface for the tool is build
up in a command prompt. A user friendly graphical user interface is made
using Java and is capable of plotting the simulation results of the networks
in a project. It is developed to make it easy to compare the results of the
simulations.

The tool is useful to provide an overview of a large-scale network. It only
supports three simulations, which are some important simulations in order to
see how the network performs.

This tool is also expendable for other simulation parameters, for instance a
price parameter of the nodes and links. It can be done by making a new class
for each simulation and add it to the existing tool. Furthermore, it would
be nicer if the simulation tool had a more user friendly user interface. The
improvements can be considered for the future‘s development of the simulation
tool.
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APPENDIX A

(GRAPH THEORY

When studying network topologies and their performance, knowledge to graph
theory is needed. The basic concepts of graph theory and flow in networks are
the essential ingredients of an analytical approach to the design and analysis
of large-scale networks.

The basic mathematical concept underlying large-scale networks is some set
of vertices (nodes) which are interconnected by lines or curves called edges.
Such an object is called a graph or a digraph!, as if the edges are undirected
or directed with arrows. Actually, if each edge in a graph is assigned a weight,
the graph is a network. The weight may represent length of a cable, bit rate,
probability of failure of a power line, etc. Many problems regarding the design
or analysis of networks can be formulated via this basic mathematical model.

A.1 Graph Theory Definitions

The first question to answer is, what is a graph? A graph is a set of points in a
plane (or in 3-space) and a set of line segments (possibly curved), each of which
either joins two points or joins a point to itself. A mathematical definition of
a graph is: A graph G = (V, F) is a mathematical structure consisting of two
sets V and E. The elements of V are called vertices (nodes), and the elements
of E are called edges (links). A graph consisting of a single vertex is called a
trivial graph. In other words, a graph is a mathematical object that can be
used to model a network. From some graph theory parameters are defined [13].

A walk in a graph is an alternating sequence of nodes and lines, starting with
a node and ending with a node. The number of lines in the walk is defined as
the length of the walk [16].

!Digraph is the abbreviation for directed graph
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e Trail: a walk with no repeated edges.
e Path: a walk with no repeated vertices.

e Cycle: a closed path with at least one edge. The length of the shortest
graph cycle is called a girth.

A connected graph is a graph where every pair of distinct vertices has a walk
between them. The distance between two nodes in a graph G, is the length
of the shortest path between them. If there is no such path, the distance is
infinite.

e Endpoints: a set of one or two vertices associated to each edge.

Loop: an edge where both end points are the same.

The degree of a vertex: the number of edges in the graph that has same
the node as an endpoint (plus twice the number of self-loops).

Adjacent vertices: Two nodes are adjacent if there is an edge that has
them as endpoints.

Incidence: The relationship between an edge and its endpoints.

If a graph is connected, the path of least length from a vertex u to a vertex v
in the graph is called the shortest path from u to v, and its length is called the
distance from u to v. The eccentricity of a vertex v is defined as the distance
from v to the most distant vertex from v. A vertex of minimum eccentricity is
called center. The eccentricity of a center of a graph is called the radius. The
maximum eccentricity among all vertices of a graph is called the diameter.
Furthermore, when a graph be weighted, there is a value associated with each
edge (e.g. link speed, cost, etc.).

e Subgraph: A graph G = (N, A) is a subgraph of G = (N, A) if N C
N and A C A. A maximal connected subgraph of a graph is called a
component. A subgraph is said to span its set of vertices.

e Isomorphism: Two graphs G; and G, are isomorphic if there is a 1-1
mapping f: v; — v, such that (vi, v2) € Ey if and only if (f(v1), f(v2)).

e Tree: a connected, simple graph without cycles. Any tree with n nodes
has n-1 edges.

e Spanning Tree: A tree T is a spanning tree of a graph G if T is a subgraph
of G that contains all the vertices of G.

e Minimal Spanning Tree: Let G be a weighted graph. A minimal spanning
tree of G is a spanning tree of G with minimum weight.
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e Star: a tree where only 1 node has degree greater than 1.

e Chain: a tree where no node has degree greater than 2.

To make a navigation or a search in a graph there are two alternatives, namely
breadth first search and depth first search. Breadth first search processes all
nodes in a given level before proceeding to next level, and depth first search
process next level as soon as possible. The searching algorithms has different
advantages; breadth first quickly develops a big search space and finds the
optimal solution. Depth first find a suboptimal solution faster. Both of them
need a method for testing if a vertex has already been visited.

To optimize a connected graph, the minimum weight has to be found. For
this purpose, a technique called Minimal Spanning Tree (MST), can be used.
Both Kruskal‘s and Prim‘s algorithm can be used to find MST. The number
of hops defined in section 2.11 on page 9 will grow past a reasonable level as
the number of nodes and traffic grow, and MST is not a good solution. Then
an another tree design is to be considered, namely the Shortest Path Trees
(SPT). For this purpose Dijkstra‘s Algorithm is used. A comparison between
SPT versus MST shows that:

e SPT has lower utilization of the links.
e MST has lower cost.
e Important: SPT finds smaller average number of hops.
The definition of a planar graph is a graph which is isomorphic to a plane

graph, which means that it can be drawn as a graph with no edges crossing
each other.

Since some graphs of degree 3 are analysed in the report, a general spanning
tree for a 3 degree graph is shown in figure A.1 [17].

Figure A.1: A general spanning tree for a 3-degree graph.



APPENDIX B

SCENARIOS AND GUIDELINES TO
THE USE CASES

The guidelines and scenarios for the use case 1.The user creates a new project
is described in chapter 5.2.3 on page 28. Guidelines and scenarios for the rest
of the use cases are discussed in this appendix.

B.1 The user opens a project

e The user choose "open project" from the project menu, the platform asks
for a name, the user types a new name, the platform accepts name and
the project opens.

— Preconditions: The platform is in the start menu, and project or
projects exist.

Trigger: The user opens an existing project.

— Description: The user choose open project and type in the name for
the given project. The platform opens the project.

— Post Conditions: An existing project is opened and enters the project
menu.

e The user choose "open project" from menu, the platform asks for a name
and the user types a name. The platform do not find this project name
and ask for new name, the user types a new name, the platform accepts
name and the project opens.

— Preconditions: The platform is in start menu and project or projects
exists.

— Trigger: The user opens an existing project.

— Description: The user choose open project and type in the name for
the given project, the platform does not find the project name and
asks for a new name. The user types in a new name, the platform
finds it and the project is opened.

— Post Conditions: An existing project is opened and the platform
enters the project menu.

108



B.2 THE USER CLOSE THE PROJECT 109

B.2 The user close the project

e The user choose "close project" from the project menu and the project
closes.

— Preconditions: The platform is in project menu.
— Trigger: The user closes the project.

— Description: The user choose close project from the project menu
and the project is saved and closed. The platform enters the start
menu.

— Post Conditions: The project is saved, and the platform enters the
start menu.

B.3 The user specifies a new network in the project

e The user choose "new network" in project menu. The platform asks for
a name, the user types a name and the name is accepted. Then the user
choose enter manually in the design network menu, types the number of
nodes and enter the link list manually.

— Preconditions: The platform is in the project menu.
— Trigger: The user defines a new network.

— Description: The user choose "new network" in project menu and
gives the network a name. The user choose enter manually in the
design network menu and types in number of nodes and link list.
The platform creates a new network and enters the network menu.

— Post Conditions: A new network is created and the platform enters
the network menu.

e The user choose "new network" in the project menu and the platform
asks for a name, the user types a name. Then the platform finds a sim-
ilar name and asks for new name, the user types new name which is
accepted.Then the user choose enter manually in the design network
menu, types the number of nodes and enter the link list.

— Preconditions: The platform is in the project menu and other net-
works has to be defined.

— Trigger: The user defines a new network.

— Description: The user choose "new network" and give the network
a name. The platform asks for a new name because the name is
not unique and the user types in a new name.The user choose enter
manually in the design network menu and types in number of nodes
and link list. The platform is creating a new network and enters the
network menu.
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— Post Conditions: A new network is created and the platform enters
the network menu.

B.4 The user adds an existing network to the project

e The user choose "add network" in the project menu, the user types in a
name and the platform accepts the name.

— Preconditions: The platform is in project menu and there have to
be existing networks.
— Trigger: The user adds an existing network to the project.

— Description: The user choose "add network" in the project menu
and types in a name. The platform adds the network to the project.

— Post Conditions: The network is added to the project and platform
is in project menu.

e The user choose "add network" in the project menu and types in a name,
the name is not accepted by the platform because it is not existing, the
user types in a new name and a network is added to the project.

— Preconditions: The platform is in project menu, there have to be
existing networks.
— Trigger: The user adds an existing network to the project.

— Description: The user choose add network in the "project menu"
and types in a name, the platform does not find the network, the
user types in a new name and the platform adds the network to the
project.

— Post Conditions: The network is added to the project and platform
is in project menu.

B.5 The user opens an existing network in the project

e The user choose "open network" in the project menu and the user types
in a name. The platform finds the name and open the network.

— Preconditions: The platform is in the project menu and there have
to be existing networks in the project.
— Trigger: The user opens an existing network that is in the project.

— Description: The user choose "open network" in the project menu
and types in a name. The platform opens the network and the net-
work menu appears.
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Post Conditions: The network is opened, the platform is in the
network menu and the network is ready to be reconfigured and
simulated.

e The user choose "open network" in the project menu and the user types
in a name. The name is not accepted by the platform because it is not
existing, the user types in a new name and a network is opened.

Preconditions: The platform is in the project menu and there have
to be existing networks in the project.

Trigger: The user opens an existing network that is in the project.

Description: The user choose "open network" in the project menu
and types in a name. The platform asks for a new name because
the network is not in the project. The user types in a new name,
the platform opens the network and the network menu appears.

Post Conditions: The network is opened, the platform is in the
network menu and the network is ready to be reconfigured and
simulated.

B.6 The user removes a network from the project

e The user choose "remove a network" from the project and the platform
removes the network.

Preconditions: The platform is in the project menu.
Trigger: The user removes a network from the project.

Description: The user choose "remove network" in the project menu
and the user types in a network name to remove. The platform
removes the network from the project. menu appears.

Post Conditions: The network is removed, and the platform shows
the project menu.

B.7 The user makes changes in the network

e The user choose "reconfigure network" in the network menu. The plat-
form suggests the same file name to overwrite the old file, the user accepts
this and make changes. The platform saves changes in the same file.

Preconditions: The platform is in the network menu.

Trigger: The user makes changes in the network and save the changes
in the same file.

Description: The user choose "reconfigure network" in the network
menu and the platform suggest the same file name. The user accepts
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and the user manipulate the network. The platform saves the new
manipulated network with the same name.

— Post Conditions: The manipulated network is saved, and the plat-
form is in the network menu.

e The user selects "reconfigure network" in the network menu. The plat-
form suggests the same file name to overwrite the old file. The user does
not want this and writes another file name to keep the old network. The
user make changes and the platform saves changes in a new file.

— Preconditions: The platform is in network menu.

— Trigger: The user makes changes in the network and save the un-
configured network.

— Description: The user choose "reconfigure network" in the network
menu. The platform suggests the same file name, the user types a
new name in order to keep the unconfigured network. The user ma-
nipulates the network and the platform saves the new manipulated
network with the new name.

— Post Conditions: Both unconfigured and configured network is saved,
and the platform is in the network menu with the manipulated net-
work active.

e The user selects "reconfigure network" in the network menu and the
platform suggests the same file name to overwrite the old file. The user
writes another file name to keep the old network, then the platform asks
for a new name because the file name exists. The user types a new name
and make changes, the platform saves changes in a new file.

— Preconditions: The platform is in the network menu and more than
one network has to be active in the project.

— Trigger: The user makes changes in the network and save the un-
configured network.

— Description: The user choose "reconfigure network" in the network
menu, the platform suggest the same file name and the user types a
new name. The platform does not accept the filename because the
name is not unique, the user types in a new filename and the user
manipulates the network. The platform saves the new manipulated
network with the new name.

— Post Conditions: Both unconfigured and configured network is saved,
and the platform is in the network menu with the manipulated net-
work active.
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B.8 The user will auto generate a network topology

e The user enters the choice for auto generate in the design network menu
and types in number of nodes, then the menu for selecting a topology
appears. The user choose fully connected network in the topology menu.

— Preconditions: The platform is in the design network menu and the
number of nodes have to be typed in.

— Trigger: The user generates a fully connected network.

— Description: The user choose auto generate in the network menu
and types in the number of nodes. The user choose fully connected
network in the auto generate menu, and the platform makes a link
list and goes to the simulation menu.

— Post Conditions: The simulation menu appears so the user can
choose which parameters to simulate, and then simulate the net-
work.

e The user enters the choice for auto generate in the design network menu
and types in number of nodes, then the menu for selecting topology
appears. The user choose "ring network" in the topology menu.

— Preconditions: The platform is in the design network menu and the
number of nodes have to be typed in.

— Trigger: The user wants to generate a ring network.

— Description: The user choose auto generate in the design network
menu and types in the number of nodes. The user choose ring net-
work in the auto generate menu, and the platform makes a link list
and goes to the simulation menu.

— Post Conditions: The simulation menu appears so the user can
choose which parameters to simulate, and then simulate the net-
work.

e The user enters the choice for auto generate in the design network menu
and types in number of nodes, then the menu for selecting topology
appears. The user choose "double ring network" in the topology menu.

— Preconditions: The platform is in the design network menu and the
number of nodes have to be typed in.

— Trigger: The user wants to generate a double ring network.

— Description: The user choose "auto generate" in the design network
menu and types in the number of nodes. The user choose "double
ring" network in the auto generate menu, and the platform makes
a link list and goes to the simulation menu.
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— Post Conditions: The simulation menu appears so the user can
choose which parameters to simulate, and then simulate the net-
work.

B.9 The user closes the active network in the project

e The user choose "close network" from the network menu and the platform
closes the active network.

— Preconditions: The platform is in the network menu.

— Trigger: The user closes the active network in the project.

— Description: The user choose "close network" in the network menu
and the platform saves the network and closes it. The project menu
appears.

— Post Conditions: The network is saved and the platform shows
project menu.

B.10 User selects simulation parameters and starts sim-
ulation

e The user selects "maximum flow" and start simulation in the simulation
menu .

— Preconditions: The platform is in the simulation menu.
— Trigger: The user simulates the network for the max flow parameter.

— Description: The user selects "maximum flow" and choose start sim-
ulation in the network menu. The platform asks for source and sink,
the user type the source node and sink node. The platform starts
the simulation and saves the simulation results. The platform return
to the network menu.

— Post Conditions: The network has been simulated for the maximum

flow parameter and is back in the network menu.

e The user select "number of hops" and start simulation in the simulation
menu.

— Preconditions: The platform is in the simulation menu.

— Trigger: The user wants to simulate the network for the number of
hops parameter.

— Description: The user selects "number of hops" and start simulation.
The platform starts the simulation and saves the simulation results.
The platform return to the network menu.
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Post Conditions: The network has been simulated for the max flow
parameter and is back in the network menu.

e The user select traffic flow and start simulation in the simulation menu .

Preconditions: The platform is in the simulation menu.

Trigger: The user wants to simulate the network for the traffic load
parameter.

Description: The user selects traffic load and start simulation. The
platform starts the simulation and saves the simulation results. The
platform return to the network menu.

Post Conditions: The network has been simulated for the traffic load
parameter and is back in the network menu.

B.11 The user stops the simulation

e The user wants to stop the simulation and user pushes the assigned key
for stopping simulation. The simulation stops and the platform return to
the network menu.

Preconditions: A simulation is running.
Trigger: The user stops the simulation when the simulation is run-
ning.

Description: The platform is running a simulation, the user stops the
simulation by pushing assigned key, the platform stops simulation
and returns to the network menu.

Post Conditions: The platform has stopped the ongoing simulation
and is back in the network menu.

B.12 The platform plots the simulation results from dif-
ferent networks

e The user selects "plot results" from project menu and the platform plots
the results from simulations.

Preconditions: The platform is in project menu.
Trigger: The user plots the simulated networks.

Description: The user choose "plot results" in the project menu, the
platform plots the simulation results.

Post Conditions: The network simulation results is plotted, and the
platform is back in project menu.
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e The user selects "plot results" from project menu and the platform can
not find any simulation results to plot because no networks has been
simulated.

— Preconditions: The platform is in project menu.
— Trigger: The user plots the simulated networks.

— Description: The user choose "plot results" in the project menu, the
platform return a message that no simulation results are available.

— Post Conditions: No network simulation results is plotted, and the
platform is back in the project menu.

B.13 The platform shows a status bar during simulation

e Simulator is running, after a given number of iterations a character is
written to the screen.
— Preconditions: A simulation is running.
— Trigger: The platform shows the user the progress in the simulation.

— Description: When simulation is started, a status bar is showing the
simulation progress. When the simulation is ended, the status bar
disappears.

— Post Conditions: The platform has closed the status bar, and is back
in the network menu.



APPENDIX C

THE UML CLASSES

This appendix is showing the UML classes for the classes used in the simulation

class design.

Nodes

Links

—NodeNumber:int
—OutputLoad:int
—TransitLoad:int
—InputLoad:int
—Capacity:int
—NextNode:*Nodes

—LinkNumber:unsigned long
-LinkLoad:int
-LinkSource:int
-LinkSink:int

-LinkCap:int

-LinkLoad:int

+Nodes(int,int)
+GetNodeNumber():int
+SetNodeNumber(int):void
+GetCapacity():int
+SetCapacity(int cap):void
+GetInputLoad():int
+SetInputLoad(int):void
+GetOuputLoad():int
+SetOutputLoad(int):void
+GetTransitLoad():int
+SetTransitLoad(int):void
+SetNextNode(Nodes*):void
+GetNextNode():*Nodes
+PrintNode():void

—NextLink:*Links

+Links(int,int,int,int)
+SetLinkNumber(int):void
+GetLinkNumber():int
+SetLinkSource(int):void
+GetLinkSource():int
+SetLinkSink(int):void
+GetLinkSink():int
+SetLinkCap(int):void
+GetLinkCap():int
+SetLinkLoad(int):void
+GetLinkLoad():int
+SetNextLink(*Links):void
+GetNextLink():*Links

Figure C.1: Nodes

+PrintLink():void

and links class methods.
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Project Network

—LastNodeCounter:int
—NumberOfNodes:int
—LastLinkCounter:int

—ProjectName:char
—NetworkCounter:int

—ProjectFileName:char —NetworkName:char
—OpenOK:bool —NodeFileName:char
~NetwListPtr:Network* -LinkFileName:char
- —ResultsFileName:char

+Project() ~OpenOK:hool
+CreateNewProject():void —NodeL.istPtr:Nodes*
+ListNetworksInProjects():void —LastNodePtr:Nodes™
+AddNetwork(char*):void ~LinkListPtr:Links*

—LastListPtr:Links*
—NextNetwork:Network*
~NumOfLinks:unsigned long

+AddNetworkInit():void
+DeleteNetwork():void
+SaveProject():void
+OpenProject(char*):void
+NewNetwork():void

+Network()
+CreateNewNetwork(*char):void
+DeleteNetworkMem():void

+OpenProject():void +AddNodeToList(int):void
+GetOpenStatus():bool +DeleteNode(int):void
+Menu():void +DeleteLink(int,int):void

+PrintNodes():void
+PrintLinks():void
+CreateRing():void
Simulation +CreateFullyConnnected():void
+CreateManually():void
+TestNetwork():void
+ChechLinks(int):void
+EditSpecLinkCap():void
+EditAllLinkCap():void
+EditSpecNodeCap():void
+EditAlINodeCap():void
+EditNodeCap(int,int):void
+EditLinkCap(int,int,int):int
+CapMenu():void
+CreateFiles():void
+RearrangeNetwork():void
+FixLinks(int,int):void
+SaveNetwork():void
+WriteNodes():void
+WriteLinks():void
+InitResFile():void
+Simulate():void
+GetNumberOfNodes():int
+GetLastNodeCounter():int
+GetNumOfLinks():unsigned long
+GetLastLinkCounter():int
+DoesNodeExist(int):bool
+SearchNode(int):*Nodes
+SearchLink(int,int):*Links
+SetNextNetwork(Network*):void
+GetNextNetwork():*Nodes

+RemoveNetwork():void

—NumberOfLinks:unsigned long
—NumberOfNodes:int
—AvgNumberOfHops:float
—AvgLinkLoad:float
—AvgNodelnputLoad:float
—AvgNodeTransitLoad:float
—MaxNumberOfHops:int
—StartNode:int
—StopNode:int
—MaxFlow:int
—MaxNodelnputLoad:int
—MaxNodeOutputLoad:int
—MaxNodeTransitLoad:int
—MaxLinkLoad:int
—NetworkName:char
—NodeFileName:char
—LinkFileName:char
—ResultFileName:char
—AvgNodeOutputLoad:float
—LinksNotUsed:int
—SumLinkLoad:int
—SumNodelnputLoad:int
-SumNodeOutpuLoad:int
—-SumNodeTransitLoad:int
—SumNumberOfHops:
unsigned long

+Simulation(char*) +SetNetworkName(char*):void
+ReadResultFile():void +GetOpenStatus():bool
+WriteResultFile():void +GetNetworkName():*char
+CountLinks(char *name):void +Menu():void
+CountNodes(char *name):void +OpenNetwork(char*):void
+SimMaxFlow():void +AddLinkToList(int,int,int):void
+SimNumbersOfHops():void +CreateDoubleRing():bool
+SimTrafficFlow():void +CreateN2Rpq():bool
+SimMenu():void +CreateRandom():bool

+CreateWheel():bool
+ListData():void
+NodeCapMenu():void
+Plot():void

Figure C.2: Project, network and simulation class methods.
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TrafficLoad

MaximumFlow

NumberOfHops

—MaxNumberOfHops:int
—NumberOfNodes:int
—StartNode:int
—Total:double
—Counter:double
—NuOfLinks:unsigned long
—Linkfile:char
—Nodefile:char
—-NodeMaxInputLoad:int
—NodeMaxOutputLoad:int
—-NodeMaxTransitLoad:int
—NodeAvglnputLoad:float
-NodeAvgOutputLoad:float
—NodeAvgTransitLoad:float
—MaxLinkLoad:int
—AvgLinkLoad:float
—NodeSumInputLoad:int
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Figure C.3: Traffic load, number of hops, maximum flow, and status bar class



APPENDIX D

PLOTTING RESULTS FOR BASIC
NETWORK STRUCTURES

In this appendix the plotting results which is missing from chapter 9 are listed.
In all plotting figures NO is a ring structure, N1 a Petersen graph, N2 a double
ring, N3 a wheel graph, and N4 a full meshed structure. All topologies have
10 nodes.

a0

[ N-O  Ring
[} N-1  Petersen
[} N-2  DoubleRing
[} N-2 itheel
m N4 FullMesh
30 30 30
| ‘ ‘
NO N1 Nz N3 N4 Mets
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. .
Figure D.1: Maximum flow.
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Figure D.2: Sum number of hops.
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Figure D.3: Maximum transit load for nodes.
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Figure D.4: Average transit load for nodes.
- M-0  Ring
- M-1  Peterzen
=] m N2 DoubleRing
- M-3  iheel
- M-4  Fulltdesh
1.13233 1.13323
1.0
ol.z
NO N1 Nz Nz N4 MNets

Average_link_load

Figure D.5: Average link load.
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Figure D.6: Links not used.



APPENDIX E

LARGE-SCALE PLOTTING RESULTS

This appendix shows plotting results which are not shown in section 10.2 on
page 88.
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Sum_Mumber_of_Hops

Figure E.1: Sum number of hops for the large-scale networks given in millions.
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Figure E.2: Sum input load for nodes for the large-scale networks.
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Figure E.3: Sum transit load for nodes for the large-scale networks.
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Figure E.4: Average transit load for nodes in the large-scale networks.
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Figure E.5: Sum link load for the large-scale networks.
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Figure E.6: Maximum link load for the large-scale networks.
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Figure E.7: Average link load for the large-scale networks.
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Figure E.8: Maximum flow for the large-scale networks.



APPENDIX F

LIST OF ACRONYMS

AWT
CRC
EIGRP
GUI
HCI
IGRP
IP
LAN
MPI
MST
NCP
O0A
00D
0S
OSPF
PNG
PVM
QoS
RAM
RMON
RFC
RIP
RTG
RTI
SPT
TCP
UDP
UML

Abstract Windows Toolkit

Class Responsibility and Collaboration
Enhanced Interior Gateway Routing Protocol
Graphical User Interface

Human Computer Interaction
Interior Gateway Routing Protocol
Internet Protocol

Local Area Network

Message Passing Interface
Minimal Spanning Tree

Network Control Protocol

Object Oriented Analysis

Object Oriented Design

Operating System

Open Shortest Path First

Portable Network Grapichs
Parallel Virtual Machine

Quality of Service

Random Access Memory

Remote Monitoring

Request For Comment

Routing Information Protocol
Random Traffic Generator
Runtime Infrastructure

Shortest Path Trees

Transmission Control Protocol
User Datagram Protocol

Unified Modeling Language
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