
Aalborg University
Institute of Electronic Systems
Department of Control Engineering

Prototyping a Fault-tolerant CAN
Bus Based Distributed

Servosystem

Worksheets

C
A

N
 b

us
 2

Left wheel node

Steering wheel node

Right wheel node

CAN bus 1

Slave

Master

Slave

MasterM
ul

tip
le

xe
r

M
ul

tip
le

xe
r

Slave

Master

M
ul

tip
le

xe
r

CAN interface

PC

CAN interface

M

M

M

CAN packet sniffer

Michael Skipper Andersen, Jørgen Friis, Niels Nørregård Hansen

Johnny Jensen, Rene Just Nielsen, Michael Pedersen

7. Semester � Group 731 � 2002

Contents

1 Introduction 3

2 Analysis 5

2.1 CAN-bussen . 5

2.2 Introducing Fault Tolerance . 10

2.3 Motor Control Rights . 12

3 Demands 16

3.1 Protocol Description . 16

3.2 General Cases . 19

4 Hardware 21

4.1 The Three Nodes Physical Description 21

5 PID Controllers For The Motors 23

5.1 Motor Modulation . 23

5.2 Controller Design . 24

5.3 Discretization and simulations 28

5.4 Test Of Control Algorithm . 32

5.5 Conclusion . 34

6 Software Description 35

6.1 Initialization . 35

6.2 Main Program . 35

6.3 Assumptions . 36

6.4 The General Cases Software Solution 38

6.5 Header Description . 40

1

2 CONTENTS

6.6 Software Functions . 48

7 Test Speci�cation 51

8 Test results 54

Bibliography 64

A Flow Charts - Wheel Node 65

B Flow Charts - Steering Wheel 76

C Bootloader 90

D Bus Sni�ng 92

E Schematics 93

F CD 96

Chapter 1

Introduction

The objective of the project is to make a distributed servo system. This means
the system, on the top level, must be able to make the two wheels and the
steering wheel turn as if they were mechanically connected.

The system contains of the following parts:

� A steering wheel node.

� Two wheel nodes.

� A steering wheel.

� Two servo motors.

� A PC to monitor the bus tra�c.

The nodes of the system are connected with double CAN bus as in �gure 1.1.

CAN

Wheel
Steering

M 1 Wheel node
nr. 1

Wheel node
nr. 2

Steering
wheel node PC

M 2

Figure 1.1: The setup of the steering wheel system.

The di�erent parts of the system is described in the following way:

3

http://www.niels.com

4 Chapter 1: Introduction

The three nodes: each consist of two PICs (microcontrollers) each are con-
nected to a CAN bus. Further, the PICs are interconnected through the
SPI (Serial Peripheral Interface) line in a master/slave con�guration. The
two PICs of a node perform basicly the same operations and they agree
on sending the same messages on the CAN bus.

The steering wheel: Is of the force feedback type which means that it can
�resist� if the two wheels can not be moved further.

The servo motors: Small DC motors that contain a potentiometer to feed
back the position of the motor shaft.

The PC: Contains a card with two CAN drivers to monitor the bus tra�c.
It further contains software to print out the di�erent CAN messages on
the buses and to save the bus tra�c in a text �le.

Further the three nodes perform di�erent top level tasks:

The steering wheel node: It collects the data from the two wheels and the
steering wheel itself and decides the new positions of the wheels and
steering wheel. Further it has to act on any alarm or error sent from the
wheels.

The wheel nodes: Must feed back their actual position to the steering wheel
node and report any error from the node.

Chapter 2

Analysis

2.1 CAN-bussen

Informationerne i dette afsnit beror på oplysninger fra den o�cielle CAN-
speci�kation fra Bosch [cdrom, can_spec.pdf] og [cdrom, MCP2510.pdf].

CAN-bussen (Controller Area Network) er en 1 Mbit=s seriel bus oprindeligt
udviklet til brug i bilindustrien. Ideen er, at alle bussens knudepunkter kan
sende og modtage på bussen og har et antal accept�ltre, som gør, at de kun
modtager data frames med bestemte identi�ers.

CAN-protokollen benytter sig af CSMA/DCR1.

Alle knudepunkterne lytter på bussen og er i stand til at registrere, om en frame
er gyldig, dvs. fejlfri. Hvis blot ét knudepunkt registrerer en fejl i framen, vil
denne begynde at transmittere error frames og afsenderen vil forsøge at sende
framen igen. Hvis et knudepunkt gentagne gange transmitterer eller modtager
en fejlbehæftet frame, vil den efter et bestemt antal forsøg ekskludere sig selv
fra netværket.

CAN-bussen kan benytte 3 protokolversioner:

� type 2.0A kan sende og modtage 11-bit-identi�ere.

� type 2.0B passiv kan sende 11-bit-identi�ere og modtage 29-bit-identi�ere.

� type 2.0B aktiv kan sende og modtage 29-bit-identi�ere.

2.1.1 Frame-typer

Der er 4 typer frames:

� Data frames bruges til at sende op til 8 bytes data.

1Carrier Sense Multiple Access with Deterministic Collision Resolution.

5

6 Chapter 2: Analysis

� Remote frames bruges til at forespørge data til afsenderen af remote
framen.

� Error frames transmitteres af et knudepunkt, der har opdaget en fejl i
transmissionen.

� Overload frames udsætter transmissionen af den følgende data eller re-
mote frame.

Data frame

På �gur 2.1 ses en data frame, som er opdelt i følgende områder:

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

Identifier
Control

field
Data
field

Start of frame RTR

DD

Arbitration field

R

CRC delimiter

ACK field End Of Frame IFS

R RCRC

CRC field

Figure 2.1: Data frame.

Start Of Frame er en �dominant�2 bit, som indikerer starten på en frame.

Arbitration �eld består af en identi�er og en RTR-bit (Remote Transmis-
sion Request). Der skelnes mellem 11- og 29-bit identi�ere afhængig af,
hvilken protokolversion der benyttes. Hvis �ere knudepunkter transmit-
terer en frame på bussen på samme tid, vil identi�eren med den laveste
talværdi, i henhold til princippet om recessive og dominante bits, få lov
at fortsætte transmissionen. De andre knudepunkter lytter på bussen og
genudsender deres respektive frames, når den igangværende transmission
er færdig (se �gur 2.2).

RTR-bit'en indikerer forskellen på en data frame og en remote frame. I
en data frame er den dominant, mens den er recessiv i en remote frame.

Control �eld er et 6-bit område, der angiver, hvor mange data-bytes, der
transmitteres. Kun talværdierne fra 0�8 benyttes.

Data �eld indeholder fra 0�8 bytes data fra afsenderen. Det benyttes kun i
en data frame.

CRC �eld (Cyclic Redundancy Check) består af en 15-bit kode til bereg-
ning af fejl i transmissionen og en recessiv CRC delimiter-bit. Hvert
knudepunkt læser og sammenholder CRC-koden med deres egne bereg-
ninger.

2Der skelnes mellem �dominante� og �recessive� bits. Hvis en dominant og en recessiv bit

lægges på bussen på samme tid, vil den resulterende værdi blive dominant.

2.1 CAN-bussen 7

Knudepunkt A falder bort

Bit 10 9 8 7 6 5 4 3 2 1 0

Knudepunkt A
ID 1337

ID 1335
Knudepunkt B

Knudepunkt C
ID 1444

Knudepunkt C falder bort

Figure 2.2: Bit-arbitrering. Knudepunkt B får lov at udsende data på CAN-
bussen.

ACK �eld (Acknowledge) består af et ACK slot og en ACK delimiter-bit.
Knudepunktet, der har afsendt framen sender et recessivt ACK slot-
bit, mens alle øvrige knudepunkter, der har modtaget en fejlfri frame
(beregnet udfra CRC-koden) transmitterer en dominant bit. Efter ACK
slot'en udsender afsenderen en recessiv ACK delimiter-bit.

End of frame består af syv recessive bits, der indikerer slutningen af en
frame.

IFS efter tre recessive IFS-bits (Interframe space) er bussen tilgængelig for
nye afsendere.

Remote frame

På �gur 2.3 ses en remote frame.

��
��
��
��
��

��
��
��
��
��

R

CRC delimiter

ACK field End Of Frame IFS

R RCRC

CRC field

��
��
��
��
��

��
��
��
��
��

Identifier
Control

field

Start of frame RTR

RD

Arbitration field

Figure 2.3: Remote frame.

Et knudepunkt, som ønsker at modtage data, kan initiere afsendelse af disse
ved at sende en forespørgsel i form af en remote frame. Den eneste forskel på
en remote frame og en data frame er, at remote framens RTR-bit er recessiv
og at den ikke indeholder nogen data-bytes.

Identi�eren i den forespurgte data frame er den samme som remote framens.

8 Chapter 2: Analysis

Error frame

Frame-segmenterne Start of frame, arbitration, control, data og CRC �eld
undergår en kodning kaldet bit stu�ng. Hvis afsenderen opdager 5 ens på
hinanden følgende bits, indsætter den selv én komplementær bit og modtagerne
sørger selv for at fjerne den igen.

En error frame transmitteres, når et knudepunkt opdager en fejl i den igangværende
transmission. Da denne starter med 6 ens på hinanden følgende bits, som en-
ten bryder reglen for bit stu�ng eller det faste mønster i ACK- eller end of
frame-sekvensen, kan den afsendes på et vilkårligt tidspunkt i framen.

Error framen vist på �gur 2.4 består af 6 error �ag, 0�6 error echo �ag og 8
error delimiter �ag.

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

Identifier
Control

field
Data
field

Start of frame RTR

DD

Arbitration field

CRC

Afbrudt sekvens underlagt reglen for bit stuffing

CRC field

IFS

R

Error frame

Error
delimiter

Echo error
flags

Error
flags

Figure 2.4: Error frame, der afbryder en igangværende data frame.

Der skelnes mellem error active- og error pasive-knudepunkter. Et error active-
knudepunkt vil afbryde den igangværende frame med 6 dominante error �ag.
Hvis ikke samtlige error active-knudepunkter opdager fejlen på bussen, vil de
andre registrere en bit stu�ng fejl i løbet af højst 6 bits (de 6 error �ag) og
begynde at transmittere 6 error �ag resulterende i 0�6 echo error �ag (se �gur
2.5).

Et error passive-knudepunkt vil derimod ikke afbryde den igangværende trans-
mission, men tilkendegive at det har opdaget en fejl ved at udsende 6 recessive
error �ag.

En error frame afsluttes med 8 recessive error delimiter-bits.

Overload frame

En overload frame kan transmitteres som følge af to betingelser:

� Hvis overload framens afsender har brug for en tidsforsinkelse, inden
næste data eller remote frame afsendes.

2.1 CAN-bussen 9

IFS

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

������������������������
������������������������
������������������������
������������������������
������������������������

������������������������
������������������������
������������������������
������������������������
������������������������

RR

RR

Knudepunkt A

sekvens på bussen
Resulterende

D

D

Øvrige knudepunkter
tilsluttet bussen

D D

IFS

flag
Error

flag
error
Echo

Error
delimiter

Figure 2.5: Når knudepunkt A har transmitteret en error frame opdager
bussens øvrige knudepunkter dette og udsender echo error frames.

� Hvis der opdages et dominant bit i IFS-feltet.

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��End of frame,

error delimiter eller
overload delimiter

IFS

R
Overload
delimiter

Overload
flags flags

Echo overload

Figure 2.6: Overload frame.

Den har præcis samme format som en error frame (se �gur 2.6), men trans-
mitteres først efter end of frame, error delimiter eller overload delimiter. Der
kan højst transmitteres 2 overload frames efter hinanden.

2.1.2 Fejlhåndtering

Hvert knudepunkt indeholder to 8-bit-registre til fejlregistrering - Transmit
Error Count (TEC) og Receive Error Count (REC) - og indholdet af disse
bestemmer, hvilken af følgende tre tilstande knudepunktet be�nder sig i:

Error active hvis værdien af både TEC og REC er mindre end 128.

Error passive hvis værdien af TEC eller REC er mellem 128 og 255.

Bus o� hvis værdien af TEC eller REC overskrider 255.

For hver vellykket modtagelse dekrementeres REC og TEC med 1. En trans-
missionsfejl inkrementerer TEC med 8 og en modtagefejl inkrementerer REC
med 1. Således vil et knudepunkt, der gentagne gange transmitterer fejlbe-
hæftede frames hurtigt blive sat i bus o�-tilstand.

Et knudepunkt i bus o�-tilstand vil blive bragt tilbage i active error-tilstanden
og få nulstillet TEC og REC, når det har registreret 11 på hinanden følgende
recessive bits 128 gange på bussen.

10 Chapter 2: Analysis

2.2 Introducing Fault Tolerance

This section speci�es the di�erent actions made to introduce fault tolerance in
the di�erent nodes of the steering wheel system. The strategies proposed here
are based on that the interconnection of the di�erent nodes is made with a CAN
BUS network and therefore follows the CAN BUS standard (ISO 11898???).
That means that the handling of errors on the actual transmission line (that
is CRC errors etc.) is not described here, but is assumed handled by the fault
tolerance features in the CAN BUS standard.

2.2.1 Hardware Fault Tolerance

The basic in the hardware fault tolerance strategy in the steering wheel system
nodes is replication. This means that in each node, two PICs run in parallel on
two separate CAN-busses. This means that the system will continue to operate
if one of the CAN lines breaks. Before the PICs start to use the received data
for computations, the data from the two lines are compared, and the PICs
agree on which data to use. On the other hand no replication is used on supply
voltages or alike, which means that faults of this type is not considered.

2.2.2 Software Fault Tolerance

On the software level the two PICs of a node use handshakes to ensure that
they are both running and they perform the right computations. This means
that they compare the results of their computations before the results are used
further. Further a reasonability check is performed on calculated values and
received messages. If one PIC calculate an invalid result, this PIC will receive
the valid result from the other PIC. If all data is found invalid, the node will
use the latest valid data. This is done from the philosophy that it is better to
use old valid data, than new invalid data! If both PIC have invalid data they
must send a CAN error message with a double error �ag.

The method to introduce fault tolerance into the three nodes of the steering
system is done through the following steps (source: Copy from Roozbeh):

� Error detection.

� Damage con�nement.

� Error recovery.

� Fault treatment and continued service.

The probability of errors in logic components such as the multiplexer and CAN
drivers is very low, in according to communication errors etc. so it's assumed

2.2 Introducing Fault Tolerance 11

that these errors don't occur in this system. Of the same reasons it's also
assumed that the connections between the components don't fail.

2.2.3 Error Detection

The errors in a node falls into three di�erent groups:

1. Errors on the communication line.

2. Runtime errors in the PIC program.

3. Errors in the peripheral devices of a node.

The errors covered in 1 are all handled autonomously by the CAN modules in
the PIC.

Runtime Errors in the PIC Program

Errors in the data extracting code: The two PICs �shake hands� after re-
ceiving a data frame, and compare the received data.

Detection of deadlocks in the program: The two PICs �shake hands� af-
ter central parts of the code has been executed.

Detection of errors in the calculations: The two PICs �shake hands� af-
ter the calculation of control signals.

Errors in the Peripheral Devices of the Node

Error in the sampling or potentiometer: The two PICs agree on the sam-
pled value and make a range check on the result.

2.2.4 Damage Con�nement

The concept of the damage con�nement used in this context is a �rewall con-
cept, which means the following:

� At errors where the two PICs compare their data (or received messages)
illegal data is discarded when it is detected and overwritten with valid
data.

� Illegal data is discarded under range check.

12 Chapter 2: Analysis

2.2.5 Error Recovery

� After comparation of data, the data that is decided to be faulty is dis-
carded and overwritten by valid data.

� The same is done at range check with one addition. If both sets of received
data (or calculated value) are considered to be in the invalid range a
retransmission/recalculation is requested together with sending a CAN-
error frame.

� When a deadlock is detected the PIC that is alive will try to reset the
dead PIC (and send a CAN-error message to the steering wheel that
this has happened). This is continuing, even if the the dead PIC has not
responded in a long time.

� When the potentiometer is detected to be faulty, the PICs try to sample
the potentiometer again. If the new value still is faulty the current wheel
position is maintained and an alarm is transmitted on the CAN-BUS.

2.2.6 Fault Treatment and Continued Service

� Errors in the potentiometer can't be recovered so when this error occur
nothing can be done, and the system is out of function.

� After a reset of a PIC normal operation is tried, it means that the com-
munication between the PICs are tried again.

� If a transmission line is faulty both PICs will still be operational. This
means that the comparation of CAN messages will not be performed. On
the other hand both PICs will calculate control signals and sample the
potentiometer, so in this part the PICs still check each other.

2.3 Motor Control Rights

In connection with using two PICs to control one motor, an important question
has to be answered: Which of the two PICs has the right to apply the control
signal on the motor? This can be rephrased to which PIC may control the
MUX and thereby the motor? It also has to be decided which PIC has the
right when both PICs claim the right to the motor. This is further complicated
in the situation where faults are introduced. To answer this question, it is �rst
assumed that only one PIC can be faulty, that is a single failure approach is
assumed.

In the following three di�erent solutions to the problem is purposed and then
discussed. This will serve as an argumentation for the use of one of them in
the steering wheel system. The proposals are:

2.3 Motor Control Rights 13

1. Use an external micro controller to to decide which system that has to
operate the motor

2. Use external logical gates

3. Use the internal interrupts of the PICs

Use an External Microcontroller

An external microcontroller can be inserted in the system to decide which PIC
that will have the right to control the motor. The external microcontroller
must receive signals from both PICs and decide which PIC that has to control
the motor by changing the multiplexer. A diagram is shown in �gure 2.7

PIC
External

Master PIC

Slave PIC
Mux

To motor

CAN−bus 2

CAN−bus 1

Figure 2.7: An external PIC controls the multiplexer.

Use of External Logical Gates

In this solution the two PICs are connected to the MUX control pin through
some logical gates instead of a microcontroller. This can be more reliable be-
cause the probability of errors in logical gates is lower than in a microcontroller.

Use the Internal Interrupts of the PICs

Using the internal interrupts means that one PIC always controls the MUX.
Only one PIC (the master) is connected to the MUX, and the master may as
default apply control signals to the motor. The only way the slave can gain the
right to apply a control signal is by generating an interrupt on the master, that
hands over the motor control to the slave. The interrupt is generated through
a dedicated connection between the master and slave, where the interrupt is
triggered on a rising edge. The con�guration is shown in �gure 2.8.

14 Chapter 2: Analysis

CAN−bus 1
Master PIC

Slave PIC
Mux

To motor

CAN−bus 2

Figure 2.8: One PIC controls the multiplexer and the other can get the right
through an interupt.

Discussion

The �rst proposal might seem as the obvious solution. The deciding PIC can be
simple only needing few I/O ports and no other facilities. It will need a simple
program to decide which of the two other PICs that can control the motor. On
the other hand it introduces yet another unit that has the possibility of ending
up in a deadlock. Further since the operation of the third PIC is simple, it
might be better to use some simple logic due to the lower probability of errors
in the simple logic gates.

The second proposal moves the decision about which PIC have the right to
control the motor away from the two PICs and into a simple logical circuit.
This indicates that even if the PICs contains faults, the right decision will be
made after all. But by using gates, it is required that the output pins of the
PICs are in a de�ned state that the gates recognize. If a PIC has crashed it
is not known if these output pins will be in a high or a low state. This yields
both for the master and the slave PIC and it makes it very di�cult to design
a good logical circuit to decide if it is the right PIC that controls the motor.
Who has the right to overrule who???

The third solution is based on the assumption that it is always possible to
generate an interrupt. This is taken as a fact since the detection and handling
of interrupts are handled on the hardware level of the PIC (see data sheet!).
Like in the second proposal, the master is assigned to the motor as default, but
here it is also the master that controls the MUX. If the master should end in
a deadlock, the slave will take the MUX control through the interrupt. If the
slave contains a fault that holds the interrupt control pin high the slave will
get the control over the motor. This will only happen in a short time, since
the master as default will have the motor control when it is running and the
interrupt is only generated on rising edge of the signal. Therefore the master
will retain the motor control and the system continuous to operate.

Based on the previous arguments it is chosen to use the third solution in
the steering wheel system. The main argument is that it is a simple solution

2.3 Motor Control Rights 15

that does not need additional components, and further it is considered more
reliable. It further holds the possibility that the interrupt could contain a reset
instruction to try to bring the master to life again after a deadlock.

Chapter 3

Demands

3.1 Protocol Description

The communication from the steering wheel node (SWN) to the two wheel
nodes (WN) goes o� with a �xed frequency. Whenever a wheel node has in-
tercepted a reference value it attempts to control the wheel to this positions
and hereafter responds with its current position to the steering wheel node.

The SWN sends reference values (refValMot1 and refValMot2) to the WNs
that respond with their current values (curValMot1 and curValMot2). Besides,
the SWN holds two variables (curValSw and refValSw) containing the current
steering wheel position and the steering wheel reference value.

The two PICs in each node must always transmit the same contents on the
CAN bus at approximately the same time.

If a node realizes that one of the CAN lines has been dead a certain number
of consecutive times it should broadcast an alarm frame (a high-priority CAN
frame) that the other nodes can react in correspondence with.

The protocol can be described with the following pseudo-code cases:

Case A

Steering wheel and wheels are all in the same position.

if (curValSw==curValMot1==curValMot2) {

Do nothing. Everything is fine.

}

Case B

One of the wheels cannot go in the same position as the steering wheel. First,
the system must then ensure that both wheels are in the same position that is,
the wheel that is in the same position as the steering wheel should obtain the

16

3.1 Protocol Description 17

same position as the other (immovable) wheel. Hereafter the steering wheel
must obtain the position of the wheels.

if (curValSw==curValMot1 && (curValMot1!=curValMot2)) {

refValMot1=curValMot2

refValSw=refValMot1

}

likewise for the other wheel:

if (curValSw==curValMot2 && (curValMot1!=curValMot2)) {

refValMot2=curValMot1

refValSw=refValMot2

}

Case C

The driver turns the steering wheel. The wheels must change their positions.

if (curValSw!=(curValMot1==curValMot2)) {

refValMot1=curValSw

refValMot2=curValSw

}

Case D

The steering wheel and the wheels are all in di�erent positions. If this occurs
the steering wheel and wheel 1 will attempt to adjust their positions to wheel
2. If they do not succeed within 5 consecutive samples the steering wheel and
wheel 2 will attempt to adjust their positions to wheel 1.

3.1.1 CAN Messages

The CAN identi�ers are chosen such that the the SWN has a higher priority
than the WNs and the alarm frames have highest priority.

Address
Steering wheel 00000001000
Wheel 1 00000010000
Wheel 2 00000100000
Alarm 00000000000

18 Chapter 3: Demands

if (curValSw!=curValMot1!=curValMot2) (less than 5 consecutive sample times) {

refValMot1=refValMot2

refValSw=refValMot1

} else {

refValMot2=refValMot1

refValSw=refValMot2

}

When a WN reference value is changed or updated the following CAN frame
is sent from the SWN.

Address 2 Bytes
Mot* refValMot*

The same frame format is used when the WNs send their current values to the
SWN.

Address 2 Bytes
Sw curValMot*

The 2 data bytes contain the 10-bit value from the A/D converter, the �rst byte
holding the 2 most signi�cant bits and the other one holding the remaining 8
bits.

When an insolveable fault has occured an alarm frame is broadcasted. It has
the following format.

Adresse 0 Bytes
Alarm alarmType

The alarmType can specify a request for a retransmission of data or indicate
that several insolveable errors have occured, e.g. when 10 consecutive wrong
A/D converter value have been detected.

3.1.2 Alarm Handling

When an alarm frame is transmitted, the following data byte is send:

It is send as an integer in the program. The di�erent �ags indicate the following:

Doomed: Indicate if the alarm sender is not able to receive CAN or ADC
values the last �ve times and therefor can not operate at all. The system
ends it operation.

ADCerror: Indicate if the alarm sender has trouble sampling.

CANerror: Indicates if the alarm sender has received corrupted data.

3.2 General Cases 19

D
oo

m
ed

A
D

C
er

ro
r

C
A

N
er

ro
r

m
ot

or
2

m
ot

or
1

st
ee

ri
ng

W
he

el

Flags Sender

Figure 3.1: The alarm byte.

motor2: The alarm sender is motor 2.

motor1: The alarm sender is motor 1.

steeringWheel: The alarm sender is the steering wheel.

3.2 General Cases

Here follows som general cases the system has to respond to like described.

Case 1: Either master or slave receives a CAN-messages with cor-

rupted data

If master or slave on a node receives a CAN message where the data is outside
the valid range the PICs on the node must use the received CAN-message on
the other bus.

Case 2: Both master and slave receives a CAN-messages with cor-

rupted data

If both master and slave on a node receives a CAN message with data outside
the valid range they must use the old reference values or motor position values
and then send a CAN message to the deliver of the invalid message with a
doubleerror �ag set. This must lead to a retransmission of the former corrupted
data.

Case 3: Either master or slave receives a CAN message and the other

don't

If master or slave on a node doesn't receive a CAN message and the other
do, the data from the recieved CAN message is used if it is inside the valid
range of data. Otherwise the old data is used and a CAN error message is

20 Chapter 3: Demands

send with information about the doubleerror. If a doublerror is sent ten times
consecutive, a CAN error message with information about we are doomed is
send.

Case 4: Steering wheel is disconnected from the CAN bus

If a wheel node never receives new data on a CAN bus, it must continue to
use the old data.

Case 5: Either master or slave is stuck somewhere in software

If master or slave on a node is stuck somewhere in the software, the other PIC
on the node must reset the stucked PIC to make it operate normal again, and
send a CAN message that tells that it has reset the PIC.

Case 6: Either master or slave samples invalid motor position data

If master or slave on a node samples invalid motor position values they must
use the data from the one who samples the valid data to calculate the control
signal.

Case 7: Either master or slave receives a CAN message with wrong

data and the other receives nothing

If master or slave receives corrupted CAN data and the other does not receive
anything on the CAN bus, the wheels do not know where to go. They must
therefore stay in the position where they last have received valid data.

Chapter 4

Hardware

This section gives an overview of the hardware.

4.1 The Three Nodes Physical Description

Each node consists of two interconnected PICs. They are both connected to
the same motor drive circuit but only one at a time is allowed to send a control
signal to the motor. Therefore the two PICs are connected to a multiplexer
(MUX) controled by the master PIC. Figure 4.1 shows the interconnections of
the master and slave PIC and the pins are explained in table 4.1.

PIC (master) PIC (slave)

MUX motor motor

multiplexer

OTGOTG
GO GO

IBSIP

SCK
SDI
SDO

SCK
SDI

SDO

MCI MCREQ

RDI RDI
RDO RDO

Figure 4.1: The interconnection of the master and slave PIC.

21

22 Chapter 4: Hardware

Pin Description
RDO (Ready Out) is asserted by a PIC to indicate that it is ready.
RDI (Ready In) indicates that the other PIC is ready.
SCK (Serial Clock) SPI Clock.
SDI (Serial Data Input) SPI data input.
SDO (Serial Data Output) SPI data output.
motor The direction and PWM outputs from the PICs.
MUX the multiplexer select output from the master PIC.
MCREQ (Motor Control Request) Request signal to have the master

negating MUX and letting the slave control the motor.
MCI (Motor Control Interrupt) Interrupt from the slave wishing to

control the motor.
SIP Slave Interrupt Pin
IB Interrupt Pin (actually IP, but IB sounds cooler..)

Chapter 5

PID Controllers For The

Motors

5.1 Motor Modulation

In general a DC-motor can be described by a �rst order transfer function
from input voltage to output angular velocity. Because the angular position
is measured on the motor using a potentiometer an integrator is included in
the motor model. The potentiometer gives an output voltage from 0�5 V. This
motor model is illustrated in �gure 5.1.

�(s)
K1

s+K2

1

s

V (s) !(s)

Figure 5.1: The motor model that describes the relationship between the input
voltage and the output voltage delivered by the potentiometer.

In order to make a model of the motors used in the system, the motor placed in
the steering wheel and the two position motors placed at each wheel, a couple
of measurements on the motors were made.

The test setup for the motors is the actual hardware build for the motors.

On the oscilloscope both the input voltage to the motor and the output voltage
from the potentiometer is saved in an .csv-�le. This procedure was done for a
wheel motor and the steering wheel motor.

The saved data for the motors was afterwards used to estimate the parameters
for the motors. This was done by using the Matlab

TM program Senstools

. Figure 5.2 shows the �t obtained on a wheel motor.

GWheel(s) =
�(s)

U(s)
=

0:0874

s(s+ 14:3053)
(5.1)

23

24 Chapter 5: PID Controllers For The Motors

0 100 200 300 400 500 600 700 800 900
−1

0

1

2

3

4

5
System (__) and model (....) output

y(
k)

 a
nd

 y
m

(k
)

Sampling number

errn = 1.69 %

Figure 5.2: The parameter �t obtained by Senstools for the two positioning
motors.

The same procedure is used on the steering wheel motor, and the transfer
function is found to be:

GSteering Wheel(s) =
�(s)

U(s)
=

0:1044

s(s+ 36:0063)
(5.2)

5.2 Controller Design

In order to control the positions of the motors a PID controller is used for each
of them.

In continuous time the con�guration shown in �gure 5.3 is used.

+

−

�(s)R(s)
D(s) G(s)

Figure 5.3: The control loop.

Where D(s) is the transfer function for the controller and G(s) is the transfer
function for the respective motor.

For a PID-controller D(s) is given by:

D(s) = Kp � (1 +
1

Tis
+ Tds) = Kp

�
TdTis

2 + Tis+ 1

Tis

�
(5.3)

5.2 Controller Design 25

The demands for the controller are:

� No overshoot.

� Rise time less than 78 ms.

In order to ful�ll these demands theMatlabTM functions rlocus and rlocfind
is respectively used to draw root loci and to determine the proportional gain.

The Wheel

In section 5.1 the following transfer function for the wheel motor was obtained:

GWheel(s) =
�(s)

U(s)
=

0:0874

s(s+ 14:3053)
(5.4)

From the transfer function for the wheel it is seen that it has pole in 0 and
one in -14.3053.

From the PID a pole in 0 is introduced, and two zeros that can be places freely.
Because the demand speci�es that the system have to be stable and without
overshoot the two poles have to be moved from the origo and into the left half
plane on the real axis.

In order to make the poles move in that way it is necessary to place the two
zeros from the PID as two distinct real zeros in the left half plane. In order to
make the zeros real the numerator of D(s) in equation 5.3 must have a positive
discriminant which means:

T�4i � Ti � Td � 1 > 0 , Ti > 4Td (5.5)

Now the placement of the zeros is considered and there are three possible ways
the this can be done:

� Both zeros are placed between the double pole in zero and the pole in
-14.3053. The root locus for this situation is shown in �gure 5.4(a)

� One zero is placed between the double pole in zero and the other is placed
outside the pole in -14.3053. The root locus for this situation is shown
in �gure 5.4(b)

� Both zeros are places outside the pole in -14.3053. The root locus for this
situation is shown in �gure 5.4(c)

26 Chapter 5: PID Controllers For The Motors

−15 −10 −5 0 5
−4

−3

−2

−1

0

1

2

3

4

Real Axis

Im
ag

 A
xi

s

(a)

−25 −20 −15 −10 −5 0 5
−15

−10

−5

0

5

10

15

Real Axis

Im
ag

 A
xi

s

(b)

−50 −40 −30 −20 −10 0
−25

−20

−15

−10

−5

0

5

10

15

20

25

Real Axis

Im
ag

 A
xi

s

(c)

Figure 5.4: (a)Shows the root loci of case 1. (b) Shows the root loci of case
2. (c) shows the root loci of case 3.

As it is seen in the �gure the distance the poles have to travel before they
reach the real axis increase as the zeros are moved longer into the left half
plane. And as the distance increase the required gain Kp to move the poles
that distance is increased too.

Therefore it is chosen to place the zeros as in case 1. Because the control signal
for the motor (the output delivered from the controller) is limited to �1024
the gain have to be held small. Therefore it is chosen to place one zero near
the imaginary axis and the other some way from there. It Is chosen to use
Ti = 100 and Td = 0:1 which places the zeros in z1 = �0:01 and z2 = �10:09.
This gives the root loci shown in �gure 5.5.

−0.03 −0.025 −0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02

−8

−6

−4

−2

0

2

4

6

8

x 10
−3

Real Axis

Im
ag

 A
xi

s

Figure 5.5: Root locus for the wheel.

By the use of the MatlabTM function rlocfind Kp is found to be 1072.5 in
order to make the poles real and fast. But if the rise time is measured from a
step response of the system it is seen that the rise time demand is not ful�lled.

5.2 Controller Design 27

This is shown in �gure 5.6.

Time (sec.)

A
m

pl
itu

de

Step Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
From: U(1)

T
o:

 Y
(1

)

Figure 5.6: The step response of wheel motor and PID controller.

With Kp = 1072:5 the poles in the system are placed in, p1 = �18:66, p2 =
�5:01 and p3 = �0:01. Which means that by increasing Kp wouldn't make the
system introduce any overshoot cause the poles would stay or the real axis.

Because the gain Kp already is considerably large in respect to the control
signal limit of 1024 then it is known that the system won't function properly
if the gain is made much larger when this saturation is inserted.

Therefore it is chosen not to tune the controller further before the discrete
model of the system with the saturations is made. This is done later in this
chapter.

The Steering Wheel

Same procedure as used for the wheel control system is used to design a con-
troller for the steering wheel.

In section 5.1 the following transfer function for the steering wheel motor was
obtained:

GSteering Wheel(s) =
�(s)

U(s)
=

0:1044

s(s+ 36:0063)
(5.6)

For the steering it is also chosen to use Ti = 150 and Td = 0:1. Hereby the root

28 Chapter 5: PID Controllers For The Motors

locus shown in �gure 5.7 is obtained.

−0.035 −0.03 −0.025 −0.02 −0.015 −0.01 −0.005 0 0.005 0.01

−6

−4

−2

0

2

4

6

x 10
−3

Real Axis

Im
ag

 A
xi

s

Figure 5.7: The root locus for the steering wheel motor with Ti = 150 and
Td = 0:1.

By using the MatlabTM function rlocfind Kp is found to be 3000. Hereby
the step response shown in �gure 5.8.

Again no further adjustments of the controller is made before a discrete sim-
ulation model is made.

5.3 Discretization and simulations

Because the gains (Kp) for both type motors are quite large and the control
signal is limited to be a maximum of 1024 it must be assumed that the con-
trol signal saturates and results in a slower system and with a considerable
overshoot if no compensation for the saturation is inserted.

In order to determine the size of the overshoot and the rise time, when this
saturation is inserted in the system, SimulinkTM is used.

Because the controller has to be implemented in a computer a discrete con-
troller is needed.

Because the system, that has to implement the controllers, uses analog to
digital (A/D) converters the system is described by a zero-order hold (ZOH)
discretization. And therefore the controllers are found by using ZOH.

5.3 Discretization and simulations 29

Time (sec.)

A
m

pl
itu

de

Step Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
From: U(1)

T
o:

 Y
(1

)

Figure 5.8: The step response of the steering wheel motor and controller sys-
tem.

5.3.1 ZOH Discretization

The continuous-time controller transfer function D(s) must be transformed
into a discrete-time di�erence equation before it can be implemented in the
PICs. To make this transformation, the ZOH method is used. It is de�ned as:

H(z) = ZOH(H(s)) = (1� z�1)Z

�
H(s)

s

�
(5.7)

where the Z denotes the z-transform, H(s) is the continuous-time transfer
function and H(z) is the discrete-time transfer function. Applying this to the
PID controller transfer function D(s) yields the following, where Ts is the
sample period:

ZOH(D(s)) = D(z) = (1� z�1)Z

�
D(s)

s

�
,

D(z) = (1� z�1)Z

��
K

s
+

K

Tis2
+KTd

��
,

D(z) = K +
KTsz

�1

Ti(1� z�1)
+ (1� z�1)KTd

(5.8)

To see if this discretization introduces an additional overshoot some simulations
with the discrete controller is made. The SimulinkTM scheme used in these
simulations is shown in �gure 5.9.

30 Chapter 5: PID Controllers For The Motors

0.0874

s +14.3053s2

Transfer Fcn

Switch

Step
ScopeSaturation1Saturation

abs(u)

Fcn1

K1*Td1)z+(−K1*Td1

z

Discrete
Transfer Fcn2

K1

1

Discrete
Transfer Fcn1

((K1*Ts)/Ti1)z

z−1

Discrete
Transfer Fcn

Figure 5.9: The SimulinkTM scheme used to make simulations with the dis-
crete controller.

In the discrete simulation model integrator anti-windup is included to com-
pensate for the saturations. This is done by disabling the integral part of the
controller when the control signal is calculated to be outside the saturation lim-
its. In this case when jU(z)j > 1024. This is done in SimulinkTM by including
a switch that disables the integral part of the controller when the control signal
is outside �1024.

The thing unknown at this moment before the simulations can be made is the
sampling frequency fs. This was in the demand speci�cation set to 125 Hz,
but with the slow controller this would cause an oversampling of the system
and therefore it is slowed down to 40 Hz.

For both type of motors a 1 V step is used to produce a step response from
the system. And the results for both motors are shown in �gure 5.10.

As seen in the �gure the wheel controller system has a considerable overshoot.

In order to reduce this overshoot the wheel controller is detuned. This is done
by increasing the di�erential time. And with the a Td = 1 the system works
somehow as wanted. Hereby is meant that there is not an additional overshoot
but the rise time demand is not ful�lled by any of the controllers. And with
the motors used the rise time demand cannot be ful�lled.

After this detune the step responses in �gure 5.11 is obtained.

Before the the controller can be implemented, D(z) from equation 5.8 has to
be written as a di�erence equation.

5.3 Discretization and simulations 31

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time offset: 0

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time offset: 0

(b)

Figure 5.10: The step responses of the steering wheel and the wheel motor
control system, when the discrete controller is used. (a) Shows the
step response for the wheel motors. (b) Shows the step response
for the steering wheel motor.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time offset: 0

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time offset: 0

(b)

Figure 5.11: The step responses of the steering wheel and the wheel motor
control system, after both controllers are detuned. (a) Shows the
step response for the wheel motors. (b) Shows the step response
for the steering wheel motor.

32 Chapter 5: PID Controllers For The Motors

Since D(s) describes the transfer function from the error e(s) to the control
signal u(s) then D(z) can be rewritten to a di�erence equation:

D(z) =
u(z)

e(z)
= K +

KTsz
�1

Ti(1� z�1)
+ (1� z�1)KTd ,

u(z)(1� z�1) =

e(z)(K +KTd) + e(z)

�
K

�
Ts
Ti
� 1� 2Td

��
z�1

+e(z)KTsz
�2

(5.9)

Applying the inverse z-transform (Z�1) to equation 5.9, the following di�erence
equation is obtained:

u[n] =

e[n](K +KTd) + e[n� 1]

�
K

�
Ts
Ti
� 1� 2Td

��

+ e[n� 2]KTd + u[n� 1]

(5.10)

This equation can be implemented directly in software cause K, Ts, Ti and Td
is known and is listed in table 5.1.

System K [V
V
] Ts [s] Ti [s] Td [s]

Steering wheel 3000 1

40
150 0.1

Wheels 1000 1

40
100 1

Table 5.1: The PID parameters to be implemented in the PIC software.

5.4 Test Of Control Algorithm

When the control algorithm for the motors was implemented in software the
step responses shown in �gure 5.12 was obtained. From this �gure it is seen
that the motor control system for the steering wheel doesn't act as wanted.

It is assumed that this disagreement between the simulation and the measure-
ments is because of the simple model used for the motors.

This disagreement between the simulated and the measured step responses are
caused by the two following simpli�cations in the motor model used in the
simulations:

Non-linearity in the motors: In the modulation of the motors non-linearity
was not included in the model. This means that the actual motor does
not respond after the same transfer function for changing step sizes in

5.4 Test Of Control Algorithm 33

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.2

0.4

0.6

0.8

1

time (sec)

O
ut

pu
t

Unit step for the computed wheel contoller

(a)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

time (sec)

O
ut

pu
t

Unit step for the computed steering wheel controller

(b)

Figure 5.12: The step responses of the two motor systems. (a) show the step
response for the wheels. (b) shows the step response of the steering
wheel system.

the control signal, as assumed in the model. Which hereby means that
the controller designed in this chapter does not act as wanted.

Friction causing a dead zone: When the PWM signal was applied on the
motors it was obtained that the motors did not move before the duty
cycle became larger than 30%. To compensate for this dead zone an o�set
of 30% duty cycle is included in the control signal.

Instead of making better models of the motors and after that designing new
controllers, some hand tuning of the PID controllers is done.

After this some di�erent values of Kp,Ti and Td is tried in order to �nd the
best performance of the system.

After this hand tuning the step responses of the two types of motors is seen in
�gure 5.13.

From these measurements it is seen that both controllers ful�ll the demand on
no overshoot but not the rise time demand.

In table 5.2 the PID controller values implemented in the PIC software is
shown.

System K [V
V
] Ts [s] Ti [s] Td [s]

Steering wheel 1229 1

40
90 2

Wheels 1024 1

40
5 1

Table 5.2: The PID parameters implemented in the PIC software.

34 Chapter 5: PID Controllers For The Motors

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Unit step for the controller on a wheel motor

Time (sec)

O
ut

pu
t

(a)

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (sec)

O
ut

pu
t

Unit step for the controller on the steering wheel

(b)

Figure 5.13: The step responses of the two motor systems. (a) show the step
response for the wheels. (b) shows the step response of the steering
wheel system.

5.5 Conclusion

The purpose of this chapter was to make some controllers for the motors used
in the power steering system.

First the controllers were designed in continuous time using root loci and step
responses.

After that the controller was discretizied and simulated to see if this discretiza-
tion had caused some additional changes to the control system. Because there
actually was included some overshoot in the system two things were done. To
compensate for the overshoot caused by the saturation in the control signal
an integrator anti-windup was included and to compensate for the remaining
overshoot the controller was detuned.

At last the controller was implemented in software and the controllers were
tested on the respective motors. And it was concluded that the designed con-
trollers did not work without being changed. This is mainly because of the
simple model used in the design, e.g. friction and non-linearity was not in-
cluded in the model. But after some hand tuning it was possible to make them
move some how as wanted.

So all in all, if the control system has to ful�ll the rise time demand, some
other and faster motors have to be used.

Chapter 6

Software Description

6.1 Initialization

When the three nodes are reset either of the wheel nodes (WNs) measure their
current wheel positions and send them to the steering wheel node (SWN).
Hereafter, they start running their main loop, using the just sampled value as
reference value and wait until they receive the �rst reference values from the
SWN.

Equivalently, the SWN goes in a busy-waiting loop until it has received the
current value from both WNs. Then it utilizes its main loop where it calculate
the reference values for the two WNs and for itself and sends the two WN
values on the CAN bus.

In addition to the procedure mentioned above, the initialization also sets up
various registers, timers and directions of I/O ports. This is all dons prior to
the routines mentioned above.

6.2 Main Program

The key idea in the fault tolerant nodes is that the two PICs handshake and
synchronize their data at regular intervals. This is done with a call to the
synchronize functions on the master and the slave PICs. The slave data is
then sent to the master where it is compared with the master data. The correct
data are then returned to the slave and used in the following computations.

In the beginning of the main program the master and slave handshake to ensure
that they both start at approximately the same time. Then they wait for a
main loop timer (MLT) that triggers the main loop with the sample frequency,
which is chosen to be 40 times per second (see chapter 5).

Then they call the function getMessage to check to see if a new CAN message
is arrived. If there is some �ags are set according to this and the message is
validated and data are synchronized.

After that, one control loop iteration is run by calling the function PID. This

35

36 Chapter 6: Software Description

causes the master and slave to read the wheel position and synchronize the
measured values before the new control signal is computed and applied to the
motor.

Finally, the measured (and synchronized) wheel position is sent to the SWN
and main loop is ready to be run again.

All �ow charts for the wheel node can be seen in appendix A and the �ow
charts for the steering wheel node can be seen in appendix B.

6.3 Assumptions

The following can be said in general:

� If an error frame is generated by the CAN module, due to CRC errors or
alike, this will lead to a retransmission of the data and the faulty data
does not reach the input bu�er.

� The input bu�er of the CAN module is always overwritten by the newest
message.

� Alarm frames are placed in a seperate recieve bu�er and generate an
interrupt.

In the steering wheel the following �losophi is used in connection with the
reception of data values from the wheel nodes: If no data is present use old
data, if some new data is present, use the newest data. That gives the following
two cases.

� If the either the master or the slave pic of the node has recieved new
data from one of the motors, and the other has not, the newest data is
used.

� It neither the master nor the slave pic has detected new data fron one of
the wheel nodes some old data is used.

6.3.1 SPI frame

The communacation over the SPI bus is byte orientated. In each transfer three
bytes are transmitted, containing one �ag byte and two data bytes, since data
is sent as an integer (see �gure 6.1. They are sent MSB �rst.

6.3.2 Flags and registres

OTG Order To Go, pin that indicates that the main loop can start.

6.3 Assumptions 37

Flags

Data HI byte

sO
D

M
2

sO
D

M
1

D
ou

bl
e

er
r.

 ty
pe

D
ou

bl
e

er
r.

D
F

M
SG

C
A

N
_M

SG

M
O

T
O

R

Data L byte

Figure 6.1: The SPI frame.

GO GO, pin that triggers the OTG on the other PIC.

MSG Local �ag wich is used by the master (of the nodes) in the message
reception routine to determine if a messaage is recieved or the polling
schould continiue.

DF Data Flag used to indicate, over the SPI bus, if either the master or slave
has send a frame containing data.

Double err. Flag indicating if a double error has ocoured.

Double err. type Flag that indicates the type of double error. If 0 it is an
ADC error, else it is a CAN message error.

MCREQ Motor Control Request. Pin on the master to initiate an interrupt
on the master to hand over the control of the motor.

RDO Redy Out. Pin used to indicate that either the master or slave is redy
to send over the SPI line.

RDI Redy IN. Pin used to indicate that either the master or slave is redy to
rescieve data over the SPI line.

MTO Master Time Out. Counter variable to indidate that the master is stuck.

STO Slave Time Out. Counter variable to indidate that the slave is stuck.

SIP Slave Interupt Pin.

IB Interupt pin on master.

M1C Motor 1 Counter. Register that counts the number of times a message
with data from motor 1 is recieved.

M2C Motor 2 Counter. Register that counts the number of times a message
with data from motor 2 is recieved.

S_ODM1 Slave Obsolete Data Motor 1. Flag that is set when the slave has
not recieved data from motor 1, 5 consecutive times.

S_ODM2 Slave Obsolete Data Motor 2. Flag that is set when the slave has
not recieved data from motor 2, 5 consecutive times.

38 Chapter 6: Software Description

M_ODM1 Master Obsolete Data Motor 1. Flag that is set when the master
has not recieved data from motor 1, 5 consecutive times.

M_ODM2 Master Obsolete Data Motor 2. Flag that is set when the master
has not recieved data from motor 2, 5 consecutive times.

PD Position Disagreement, �ag used in the steering wheel node to indicate if
the position of the wheels and steering wheel is out of order!

PDC Position Disagreement Counter, register used to count the consecutive
number of times that the wheel and steering wheel position is out of
order.

VLTOC Very Long Time Out Counter, used while pic's are waiting on the
other to send a OTG.

CAN_Count Counter variable to count the number of CAN double errors.

ADC_Count Counter variable to count the number of ADC double errors.

MLT Main Loop Timer, a tiner that makes the main loop run with 40 Hz.

MOTOR Flag that indicates if the data is from motor 1 or 2.

CAN_MSG Flag used locally on the master to indicate is a CAN message
is recieved.

resetFlag Local �ag used to indicate if the PIC has be reset, and if it has
parsed the GO/OTG handshake.

resetTime Counter value that indicates the time the PIC who has reset the
other PIC, expects the reset takes.

6.4 The General Cases Software Solution

This section describes the di�erent cases the system can handle. Whenever
data is mentioned it covers both data received from the CAN bus and data
retrieved from the A/D converter.

Case 1: Either master or slave receives a CAN-messages with cor-

rupted data

The program follow the normal operation until compare. In compare the sub-
routine rangeCheck is run which �nds out if the data is inside valid range. In
this case the data from one of the PICs is found invalid. This results in the
invalid data to be overwritten by the valid data and both PICs continues with
the valid data.

6.4 The General Cases Software Solution 39

Case 2: Both master and slave receives a CAN-messages with cor-

rupted data

After compare has invoked the rangeCheck on both the slave and master data
and found both invalid a double error is signaled. This is done by setting
the double error �ag in the global �ag byte. Further it is indicated through
the doubleErrorType �ag if the double error is from CAN messages or from
ADC data. After this the doubleErrorHandling is run on master. It tests if the
doubleError �ag is set and if so it �rst sends the �ag byte to the slave and
then act according to the type of error. If the doubleErrorType �ag is set the
error was from CAN messages and the handler requests a retransmission of
data. The �ag byte is sent to the slave to make sure that the same is sent on
both CAN lines.

Case 3: Either master or slave receives a CAN message and the other

don't

In the getMessage routine on the wheels the MSG and DF �ag is set because
when a PIC has received a CAN message. In the compare function these �ags
are checked. If the MSG is set and the DF is cleared it is tested if the master
data is within range. If this is the case the master data is used as syncData
and is send to the slave so both PICs use the same data. If the master data is
not valid a double error (doubleErrorType=1) is signaled. The same procedure
is performed when the slave does not receive data, only di�erence is that DF
is set and MSG is cleared.

The same procedure is performed on the steering wheel with one addition. If
the case mentioned above happens �ve consecutive times the ODM* �ag is set
in the �ag byte. This is used in the compare routine. If it is only the master
that has not received data from a motor, the slave data is used as data in both
PICs if it is valid. Otherwise a double error is signaled.

Case 4: Steering wheel is disconnected from the CAN bus

The concept is the same as in case 3, but here neither MSG nor DF is set. In
this case compare does not change any values and therefor the previous data
is used. The case is vaild for both wheel and steering wheel nodes.

Case 5: Either master or slave is stuck somewhere in software

If the slave does not make the handshake, the PICs run normally from the
start of their main loops through message reception down to synchronize. Here
the slave fails to make the handshake, and the master aborts the handshake
operation and goes into a stoOver�owHandling. This handler asserts the SIP

40 Chapter 6: Software Description

pin on the slave and sets the resetTime on the master. Asserting the SIP pin
results in an interrupt on the slave that sends a CAN alarm 0 and resets the
slave. The alarm is send by both master and slave. After this the synchronize
routine continues on the master where it tests if the data on the master is
inside the valid range. If so, it returns this data as syncData. If the data is not
valid, the last valid data is used as syncData. The master continues to operate
until the slave has gone through the reset.

The main part of this exception is the same above. In this case the master
misses the handshake and the slave goes into a mtoOver�owHandling. The
slave asserts the MCREQ pin on the master and sets the resetTime. Asserting
the MCREQ on the master makes the master go into an interrupt service
routine that hands over the MUX control to the slave and resets the master.
After this the slave continues like the master did in case 1.

Case 6: Either master or slave samples invalid motor position data

In the compare routine the sampled data is run through the rangeCheck. If
one set of data is invalid this data will be omitted and the valid data will be
used.

If both sets of data is invalid, the larst valid data will be used, and a CAN
alarm will be broadcasted.

If both sets of data are valid but not equal the average value is used as data
in both PICs.

Case 7: Either master or slave receives a CAN message with wrong

data and the other receives nothing

In this case the two PICs reaches the compare function. Here either the MSG
or DF �ag is cleared, meaning that the data that is present will be run through
rangeCheck. Here the data is found invalid which results in a double error. This
is send by both master and slave and the two PICs use the larst synchronized
valid data.

6.5 Header Description

/* SEE �gure B.4: �Control loop�

RUNS ON: master and slave PIC on all three nodes.

PURPOSE: to retrieve A/D controller value, to synchronize the measured
value (between master and slave), to calculate the control signal (duty cycle

6.5 Header Description 41

and direction) and to apply this to the motor outputs. */

int PID(int reference) { �a,�a }

/* SEE �gure A.2: �ISR for message reception in the wheel�

RUNS ON: the two wheel nodes.

PURPOSE: Uppon CAN interrupt this message will signal that a CAN mes-
sage is received. Then it will test if the message is an alarm, and call the alarm
handler or it is normal data. When normal data is received, this will be stored
in the global �tempData� variable and the function returns. */

int CAN_Read (void) { if message is an alarm: call alarmhandling; else store
the incomming data as tempData; }

/* SEE �gure B.13 �Retrieve A/D converter value�

RUNS ON: master and slave on all three nodes.

PURPOSE: retrieve the A/D converter value from the ADC bu�er and store
it in a variable. */

int AD_Read(int *result) { start the ADC; wait until the conversion is done;
store the value; }

/* SEE �gure B.5: �Synchronize data�

RUNS ON: the master on all three nodes (the code di�er from SWN to WN,
but the functionality is the same).

PURPOSE: to handshake with the slave and exchange data so that both master
and slave PIC continuous from here with the same data values.

First the function sets the global variable �tempData� to -1 (this is possible
since the value of �tempData� is known localy in �synchronize� as data). This
is done to indicate that this message has been used. So if �tempData� is -
1 befor the next call of �synchronize� no new messages has arrived and the
corresponding �ags will not be set (handlet in message reseption).

Before the handshake (RDI/RDO) is evoked, the function tests if the other PIC
on the node is beeing reset. This is done with the �resetFlag� and �reserTime�.
If these are set, there is no reason to perform the handshake with the other
PIC. In this case the handshake is omitted and the function only tests if the
data is indside valid range. Otherwise the two PICs handshake, exthange data
and the master desides what data to use.

*/

int synchronize(int data, int *syncData) { if (resetTime & resetFlag is set)

42 Chapter 6: Software Description

dont handshake, just rangeCheck own data; return; else handshake with slave;
get �tempData� from slave and store this as �sData�; call function �compare�;
send �syncData� to slave save �syncData� as �previousSyncData� return; }

/* SEE �gure B.5: �Synchronize data�

RUNS ON: the slave on all three nodes.

PURPOSE: to handshake with the master and exchange the correct data from
the function call. As with the function on the master resetTime and resetFlag
is tested.

The same actions are taken here as in the master with regards to the resetTime
and resetFlag. If non of them is set, the �sData� argument is sent to the master
and the correct, synchronized data are returned as �syncData�. Further a test
is performed to se if the master has detected a double error. */

int synchronize(int sdata, int *syncData) { if (resetTime & resetFlag is set)
dont handshake, just rangeCheck own data; return; else handshake with master
send �sData� to master call function doubleErrorTest; save returned value as
�previousSyncData� return; }

/* SEE �gure A.6: �Compare received data�

RUNS ON: the master on the two wheel nodes.

PURPOSE: to compare the arguments �mData� and �sData� and determine
waether they are the same. If not the right actions must be taken so that both
PICs continous with the same data. */

int compare(int mData, int sData, int *SyncData, int *previousSyncData) {
�a, �a }

/* SEE �gure B.7: �Compare received data�

RUNS ON: the master on the steering wheel node (same purpose but code is
di�erent).

PURPOSE: to compare the arguments �mData� and �sData� and determine
waether they are the same. If not the right actions must be taken so that both
PICs continous with the same data. */

int compare(int mData, int sData, int *syncData, int *previousSyncData) {
�a, �a }

/* SEE �gure B.8: �Double error handling (runs on master)�

RUNS ON: the master on all three nodes.

PURPOSE: to signal to both the slave PIC and the other nodes, that an error

6.5 Header Description 43

has occured and what actions they have to take in that context. The signal to
the slave is given through the SPI byte and all other nodes receive an alarm
frame on the CAN bus

The contents of the alarm frame depends on the �doubleErrorType� �ag in
the global �ag byte. In case of erroneously received CAN messages the alarm
frame should invoke a retransmission. In case of wrong A/D converter values
the alarm frame indicates this. If the same error has occured ten consecutive
times the function signals that the system is dooemd! */

int doubleErrorHandler(unsigned char *canCount, unsigned char *adcCount)
{ set doubleErrorFlag = 1) if (doubleErrorType = 1) signal CAN error to slave
and send CAN message; if (doubleErrorType = 0) signal ADC error to slave
and send CAN message; if (oneError = 10) signal Doomed on CAN; }

/* SEE �gure B.6: �Double error test (runs on slave)�

RUNS ON: the slave on all three nodes.

PURPOSE: to check if the SPI data returned from the master indicate a double
error. If so send a CAN message coresponding to the type of error indicated by
the doubleErrorType �ag in the SPI byte. After 10 consecutive double errors
of one type it sends out an alarm frame signaling that the node is doomed. */

int doubleErrorTest(void) { if (doubleErrorFlag == 1) { if (doubleErrorType
= 1) wrong CAN data received send retransmission request; else wrong ADC
measurements send alarm frame indicating ADC error; } if (oneError = 10)
send alarm frame signaling that the node is doomed }

/* SEE �gure B.11: �MTO over�ow error (runs on slave)�

RUNS ON: the slave on all three nodes.

PURPOSE: to get the MUX control from master and reset the master if it
does not make the RDI/RDO handshake in the synchronize function.

If the master does not respond in the RDI/RDO handshaking in the synchro-
nize function, take over the MUX control, set the resetTime, send a CAN alarm
and reset the master. */

int mtoOver�owHandling(unsigned char *resetTime) { set resetTime = some-
thing; toggle MCREQ on master PIC to invoke an ISR that hands over motor
control; send CAN alarm; return; }

/* SEE �gure B.9: �Interrupt subroutine for MCREQ (runs on master)�

RUNS ON: the master on all three nodes.

PURPOSE: to hand over the MUX control to the slave.

44 Chapter 6: Software Description

If the slave toggles MCREQ as a result of missing response in the RDI/RDO
handshak in the synchronize function, hand over the motor control, send an
alarm frame and reset.

*/

int ISR_timeout(void) { negate MUX pin to hand over motor control to the
slave; send CAN alarm; reset; }

/* SEE �gur B.12: �STO handling (running on master)�

RUNS ON: the master on all three nodes.

PURPOSE: to be able to reset the slave in case of missine RDI/RDO hand-
shake in the synchronize function.

If the slave didn't respond in the handshake, set the resetTime, send an alarm
frame and invoke an ISR that resets the slave. */

int stoOver�owHandling(unsigned char *resetTime) { set resetTime = some-
thing; toggle SIP; send CAN alarm; return; }

/* SEE �gure B.10: �Interrupt subroutine for STO interrupt (runs on slave)�

RUNS ON: the slave on all three nodes.

PURPOSE: to reset the slave if it misses the RDI/RDO handshake in the
synchronize function.

If the master toggles SIP as a result of missing response in the handshaking,
send an alarm frame and reset the slave. */

int ISR_timeout(void) { send CAN alarm; reset; }

/* SEE �gure B.2: �compute motor positions�

RUNS ON: the master and slave on the steering wheel node.

PURPOSE: to calculate new reference values to the three motors and store
these in global variables. Make sure that the results �ts the main protocol. */

int motorPositions(void) { �a, �a }

/* SEE �gure B.14: �ISR for CAN message reception�

RUNS ON: the master an slave on the steering wheel node.

PURPOSE: to receive and sort CAN messages from the two wheel nodes.
Saves messages to tempMot1 and tempMot2. In case of an alerm frame, react
acording to the context of the alarm. In case of obsolete data from either motor,
the master sets the mODM* �ag, which is a gobal variable on the master. If

6.5 Header Description 45

the slave detects obsolete it signals this by setting the ODM* �ag in the SPI
byte. This secures that both PICs opereta on the newest data if one PIC has
received new data. */

void Can_Read(void) { if (message == Alarm) call alarmhandling; if (message
== motor1) save message as tempMot1; if (message == motor2) save message
as tempMot2; if (olddata == something) set appropriate ODM �ag; }

/*

SEE �gures A.13, A.14, and B.15: �Alarm handling for wheel 1�, �Alarm han-
dling for wheel 2� and �Alarmhandling for ste steering wheel�.

RUNS ON: All nodes and all PICs as an ISR when an alarmframe is recieved.
(The code is di�erent from node to node, but the purpose is the same all over!)

PURPOSE: to handle the di�erent alarm frames send on the CAN bus.

The di�erent types of alarms are signaled by transmitting di�erent codes in the
alarm message. It is able to evoke a retransmission of data if such is requested
and dump the other alarms! */

int alarmHandling(int alarmFlags) { if (alarmMessage == something) do some-
thing; else don't care!!; }

/*

SEE �gure B.3: �Message recption�

RUNS ON: Steering wheel node! (the code does not di�er in the master and
slave apart from the MSG and DF �ags)

PURPOSE: take the di�erent messages recieved from the two wheels and com-
pare them, so the master and slave PIC has the same set of data to work on!

First it is tested if the �tempMot� variable is -1. If it is, no new CAN mes-
sages has arrived from this wheel and therefor neither the CAN_MSG nor
the MSG/DF �ag must be set. This test is performed on the data from both
wheels.

*/ int msgReception(void) { if (tempMot1 != -1) set �ags; call synchronizs on
tempMot1; store syncData as curValMot1; if (tempMot2 !=-1) set �ags; call
synchronizs on tempMot2; store syncData as curValMot2; clear �ags; }

/*

SEE �gure: Not present.

RUNS ON: Master and slave of the three nodes.

46 Chapter 6: Software Description

PURPOSE: to send the �input� argument together with the global SPI byte
to the slave.

*/ int SPI_Write(int input) { split int input up into two bytes; send SPI byte
and wait untill bus is ready; send �rst data byte and wait; send larst data byte
and return; }

/*

SEE FIGURE: Not present.

RUNS ON: Master and slave of all three nodes (The code is not the same, but
the functionality is the same. The di�erense is which �ags in the global SPI
byte the function is allowed to alter)

PURPOSE: To receive the data on the SPI bus and place it in the right places.

*/ int SPI_Read(int *input) { when the receive bu�er is full empty it and
store the value in a char array; when the char array is full, put the �rst value
in the SPI byte and collect the larts two values to output; }

6.5.1 Sub Routine Headers

/* SEE �gures B.5, B.7 and A.6.

RUNS ON: All nodes, it is a common function overall.

PURPOSE: to determine if the input data is inside the alowed range! This is
signaled using the return values of the function. */

int rangeCheck(int currentValue, int previousValue) { if (currentValue indside
range) return 0; else return something else!; }

/* SEE �gurs B.7 and A.6.

RUNS ON: Part of the compare functions that runs on all masters.

PURPOSE: to determine if the type of double error made in the compare is
due to a CAN message or an ADC error. If the error is due to a CAN message,
indicate this by setting the double error �ag.

int determineDoubleErrorType(void) { if (CAN_MSG == 1) set doubleEr-
rorType = 1; else set doubleErrorType = 0; }

/*

SEE FIGURE: Not present.

RUNS ON: All PICs as a part of the init function.

6.5 Header Description 47

PURPOSE: To make sure that the two PICs of a node has reached the same
place in the init function.

*/ void handshakeing(void) { set RDO; when RDI = 1; clear RDO and return;
}

/*

SEE FIGURE: A.15 and B.16

RUNS ON: All PICs

PURPOSE: makes sure that the main loop is run at a frequency of 40 Hz and
tryes to handshake with the other PIC of the node. Is this not possible, then
this PIC continous in its main loop after VLTOC has made over�ow.

In order to make sure that the two PICs start their timers simultaneously
(which menas thet the two PICs use as little time as possible to wait on
eachother) the �gotimer()� tests if it is the �rst time it is run. This is done
with the �init� variable. On the �rst call of �gotimer()� �init� will be set to
1. This means that the VLTOC is bypassed, and the PIC will wait until the
OTG is set from the other PIC. This also means that if the other PIC never
sends the OTG, the node will never start. On the other hand, when the OTG
arrives, the �init� variable is set to 0 and the VLTOC is used on the next call
of �gotimer()�.

*/ void gotimer(void) { wait until 40 Hz timer has run out; set gopin = 1; wait
until OTG = 1 or VLTOC over�ow; if (init = 1) wait only on OTG; set init
= 0; set gopin = 0; reload timer; }

/* SEE FIGURE: Not present.

RUNS ON: The steering wheel node as a subfunction in motorPositions().

PURPOSE: to determine if the to arguments �pos1� and �pos2� are within a
suitable range.

Ths function is used to introduce a tolerance in �motorPositions()�, in order
to ensure that if the two arguments are within the margin, they are treatet as
equal. If they are within the margin, the function returns 0, else it retuens 1.
*/

void comparePositions(int pos1, int pos2) { if ((pos1 - pos2) is withinMAXDIF)
return 0; else return 1; }

48 Chapter 6: Software Description

6.5.2 Init Functions

To setup all the di�erent functionallyties used in the functions discriped above,
a list of init functions is used. The main init function (den er beskrevet anden-
steds, men skal opdateres!) is:

void Init(void)

Apart from this the other functions are the following, where their name tells
what they initialize;

void PWM_Init(void)

int Can_Init(void);

void AD_Init(void);

void SPI_Init(void);

void Port_Init(void);

void Interrupt_Init(void);

6.5.3 Other Functions

int PWM_Write(int dutycycle); int AD_Read(int* result); void Can_Read(void);
int Can_Write(int Id, int msg);

6.6 Software Functions

This section tells how the microcontroller is set up for use in this application
and afterwards some simple functions are described.

6.6.1 PIC setup

The PIC18F458 has a lot of built in features such as timers and serial interfaces.
To use those they has to be set up. This is done in a few initialization functions
which will be described below.

A/D converter. The PIC has a 10 bit A/D converter with 8 possible inputs.
Input pin2 (AN0) is used for the conversion. A stable reference voltage for
the A/D converter is made by an 78L05 voltage regulator. It's connected
to the PIC on pin 4 and 5 (VREF� and VREF+). Only the 8 of the 10 bits
are used for operation, because of noise on the two least signi�cant bits.

6.6 Software Functions 49

PWM signal. To make the PWM signal the built in Enhanced/Capture/ Com-
pare/PWM module is used. The PWM register is 10 bit. The frequency is
chosen to be 1.22 kHz beacuase of some limitations in the motor drivers.
The frequency is set up by timer2. Output pin 27 is assigned to be the
PWM output pin.

The direction of the motor is decided by pin 39 and 40 (PortB.6 and
PortB.7) , which is set as output pins.

CAN Bus setup. The PIC is implemented with a full CAN system and it
supports all protocols up to the CAN2.0B Active and Passive protocol.
It contains two input bu�ers but it's not necesary to use more than one,
so only bu�er 0 is used for this application. The CAN Bus initialization
function sets up the CAN masks and �lters for input bu�er 0 and the
recieve bu�er 0 interrupt is enabled.

The ID-number for transmission is also set in the initialization function.
The baudrate is set to 625 Kb without argumentation. Pin 35 and 36 is
assigned to CANTX and CANRX and they are connected to the CAN-
driver LM119.

6.6.2 Functions

int AD_Read(float* result). The AD_Read function starts the A/D con-
verter and samples the input pin speci�ed in the initialization. The 8
MSB are multiplied with 0.0195 and stored in a �oat variable result

that will the contain the voltage between 0 and 5 V. The microcontroller
will wait for the A/D converter to �nish converting before the function
ends. This will take approximate 16 �s.

int PWM_Write(float dutycycle). The PWM_Write function writes the spec-
i�ed dutycycle yo the output pin as sepci�ed in the initialization. The
dutycycle parameter dutycycle must be a value between -5 and 5, cor-
responding to the output voltage to the motor. Values below 0 V will
make the motor drive in one direction and values above 0 V will make
the motor drive the other direction. The dutycycle is multiplied with
204.8 in order to make it a 10 bit value for the PWM control register
and written to the PWM output pin.

The direction is written to the direction output pins as described in the
initialization.

int Can_Read(int *id, unsigned char *length, unsigned char *msg).
The Can_Read function reads the recieve bu�er and puts the identi�er of
the message in id, the lenght of the message in length and the message
in msg. It also cleares the RXFUL bit, to make the bu�er ready to recieve
a new message.

50 Chapter 6: Software Description

int Can_Write(int Id, unsigned char length, unsigned char *msg). The
Can_Write function writes the msg to the CAN bus and it uses the Id as
its transimssion identi�er. If the length is zero it sets the transimssion
frame remote transmission request bit.

int PID(float reference). The PID function is the controller function. The
controller equations and parametres is in this function and it used the
AD_Read and the PWM_Write functions to sample and write to the motor.
It also contains integrator wind up for the controllers.

Chapter 7

Test Specification

The tests for the system is based on the General Cases described in chapter 3.2.

The tests are made while the system is running under normal conditions. To
start the system both wheels and steering wheel must point in approximately
the same direction before the power is turned on. Under all tests the data on
both CAN lines are logged by the CAN bus sni�er, and saved to the disk. To
plot the results a MatlabTM program is create to each test.

Test 1: Either master or slave receives a CAN-messages with cor-

rupted data

The test is performed to ensure that the system will continue working if master
or slave on a node becomes a �babbling idiot�. I.e. wrong data is transmitted
from a node on either master or slave bus. The test is performed twice, one
with a slave transmitting wrong data and one with a master transmitting
wrong data.

The �rst test is performed by forcing the master on the steering wheel to send
out wrong data. This is done in the main loop of the steering wheel software,
where the steering wheel is forced to send out the wrong value of 2000 instead
of the right value. To be able to change the reference while the system is
running it is activated by polling on a I/O pin. When the pin becomes high
the right data is changed to wrong data. While the wrong data is send the
system should be working as normal.

A similar test is performed where the slave on the steering wheel sends the
wrong data.

Test 2: Both master and slave receives a CAN-messages with cor-

rupted data

A test where both master and slave on the steering wheel sends wrong data is
performed. In this case both wheel nodes should use the last correct reference
position from the steering wheel. The wheel nodes should also transmit an
alarm (CAN error message 32) to indicate a that they receive wrong data on

51

52 Chapter 7: Test Specification

both CAN lines.

The test is performed the same way as test 1 where both master and slave
sends out wrong data.

Test 3: Either master or slave receives a CAN message and the other

don't

This test is made to ensure that the system will continue working when one
CAN line is broken.

The test is made two times, one where the master CAN line is disconnected
and one where the slave CAN line is disconnected. The �rst test is performed
by disconnecting the CAN line to the master of a wheel node. The CAN line
is disconnected while the system is running. No interruptions on the system
should be seen.

The logged data is plotted inMatlabTM and from the graphs it can be veri�ed
that the system continues to work when data from one can line is missing.

Test 4: Steering wheel is disconnected from the CAN bus

This test made to ensure that the wheel nodes will use the last correct reference
when both CAN lines from the steering wheel is disconnected.

To be able to log the data on the CAN lines this test is done by forcing the
steering wheel to stop sending data. This will simulate that both can lines
are disconnected. The data from the steering wheel is deactivated while the
system is running. This is done by polling on a I/O pin in the main loop of the
steering wheel. If the polled I/O pin is high no data is send from the steering
wheel.

The logged data is plotted in MatlabTM and it should verify that the wheel
nodes uses the last known correct reference. And from the log �le it should
be veri�ed that a CAN alarm (CAN error message 32) indicating that wrong
data is received on both CAN lines.

Test 5: Either master or slave is stuck somewhere in software

This test is made to ensure that the system will continue working after either
master or slave dies on a node. And test that the working PIC will reset the
one that died.

The test is performed by forcing the master of a wheel node into a in�nite loop
to simulate that the PIC died. To enter the while(1); loop an I/O pin is polled

53

at the beginning of the main loop and the in�nite loop is entered if the I/O
pin is high. The pin is polled high while the system is running. A similar test
is performed the slave on a wheel node dies.

The logged data is plotted in MatlabTM and it should be veri�ed that the
PIC that dies stops sending data, but the system is still working. After the
PIC who died has been reset it should start sending data again.

Test 6: Either master or slave samples invalid motor position data

This test is made to ensure that the system will continue working if a wire to
one AD converter is disconnected.

The test is made by disconnecting the wire to the AD converter on the master
on a wheel node. A similar test is performed by disconnecting the AD converter
to the slave on a wheel node.

The logged data is plotted in MatlabTM and it should be veri�ed that the
system will continue working.

Test 7: Either master or slave receives a CAN message with wrong

data and the other receives nothing

The test is made to ensure that the wheel nodes remain at the same position
when receiving wrong data or no data from the steering wheel.

The test is performed by making the master on the steering wheel send out
wrong data and disconnecting the CAN line from the slave. The wrong data
is made as in test 1. The similar test is made where the slave on the steering
wheel send out wrong data and the CAN line from the master is disconnected.

The logged data is plotted in Matlab
TM and should verify that the wheel

nodes uses the last known correct reference. And from the log �le it should
be veri�ed that a CAN alarm (CAN error message 32) indicating that wrong
data is received on both CAN lines.

Chapter 8

Test results

The results are made out from log-�les at the CD-ROM.

8.0.3 Test 1

The test were performed to ensure that the system will continue working if
master or slave on a node becomes a �babbling idiot�.

The result for the test with the master sending corrupted data is plotted at
�gure 8.1.

0 500 1000 1500 2000 2500
0

100

200

300

400

500

600
Wrong data from steering wheel

Samples

A
ng

le
 [D

eg
re

es
]

Steering Wheel reference master bus
Wheel master bus

0 500 1000 1500 2000 2500
0

50

100

150

200

250

300

Samples

A
ng

le
 [D

eg
re

es
]

Steering Wheel reference slave bus
Wheel slave bus

Figure 8.1: The two graphs shows the reference from the steering wheel to
the node and the motor position from the node at the two CAN
bus lines(master at the top graph and slave at the bottom graph).

When the corrupted data(value 526) occurs the wheel do not chance its posi-
tion. The node uses the reference value from the slave bus, see lower graph at
�gure 8.1. According to Case 1 in chapter 3.2 the result is correct.

54

55

The result for the test with the slave sending corrupted data is plotted at �gure
8.2.

0 200 400 600 800 1000 1200 1400 1600 1800
0

50

100

150

200

250

300
Wrong data from steering wheel

Samples

A
ng

le
 [D

eg
re

es
]

Steering Wheel reference master bus
Wheel master bus

0 200 400 600 800 1000 1200 1400 1600 1800
0

100

200

300

400

500

600

Samples

A
ng

le
 [D

eg
re

es
]

Steering Wheel reference slave bus
Wheel slave bus

Figure 8.2: The two graphs shows the reference from the steering wheel to
the node and the motor position from the node at the two CAN
bus lines(master at the top graph and slave at the bottom graph).

The result is the same as the result from the master.

56 Chapter 8: Test results

8.0.4 Test 2

The test with both PICs in the wheel node receiving corrupted data is plotted
at �gure 8.3

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600
Wrong data from steering wheel

Samples

A
ng

le
 [D

eg
re

es
]

Steering Wheel reference master bus
Wheel master bus

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

Samples

A
ng

le
 [D

eg
re

es
]

Steering Wheel reference slave bus
Wheel slave bus

Figure 8.3: The two graphs shows the reference from the steering wheel to
the node and the motor position from the node at the two CAN
bus lines(master at the top graph and slave at the bottom graph).

The graphs shows that with corrupted data(value 526) at both CAN-bus lines
the node uses the last correct reference value received from the steering wheel.
According to Case 2 in chapter 3.2 the result is correct.

8.0.5 Test 3

This test was made to ensure that the system would continue working when
one CAN line was broken.

The result for the test with the master CAN line disconnected are plotted at
�gure 8.4.

At the top graph it can be seen that the master CAN bus line are disconnect at
a sample value just over 300. The CAN line are connected again approximately
at 950. Under the disconnection the motor position follows the references re-
ceived by the slave as shown at lower graph. According to Case 3 in chapter 3.2
the result is correct.

The result for the test with the slave CAN line disconnected are plotted at
�gure 8.5.

57

0 200 400 600 800 1000 1200 1400
0

50

100

150

200

250

300
Test of breakdown on master CAN line.

Samples
A

ng
le

 [D
eg

re
es

]

Steering Wheel reference
Wheel master bus

0 200 400 600 800 1000 1200 1400
0

50

100

150

200

250

300

Samples

A
ng

le
 [D

eg
re

es
]

Steering Wheel reference
Wheel slave bus

Figure 8.4: The two graphs shows the reference from the steering wheel to
the node and the motor position from the node at the two CAN
bus lines(master at the top graph and slave at the bottom graph).

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300
Test of breakdown on slave CAN line.

Samples

A
ng

le
 [D

eg
re

es
]

Steering Wheel reference
Wheel master bus

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

Samples

A
ng

le
 [D

eg
re

es
]

Steering Wheel reference
Wheel slave bus

Figure 8.5: The two graphs shows the reference from the steering wheel to
the node and the motor position from the node at the two CAN
bus lines(master at the top graph and slave at the bottom graph).

58 Chapter 8: Test results

The result is the same as the result from the master.

8.0.6 Test 4

This test were made to ensure that the wheel nodes would use the last correct
reference when both CAN lines from the steering wheel were disconnected.

The result from the test are plotted at �gure 8.6

0 100 200 300 400 500 600 700 800
50

100

150

200

250

300
No data from steering wheel

Samples

A
ng

le
 [D

eg
re

es
]

Steering Wheel reference master bus
Wheel master bus

0 100 200 300 400 500 600 700 800
50

100

150

200

250

300

Samples

A
ng

le
 [D

eg
re

es
]

Steering Wheel reference slave bus
Wheel slave bus

Figure 8.6: The two graphs shows the reference from the steering wheel to
the node and the motor position from the node at the two CAN
bus lines(master at the top graph and slave at the bottom graph).

As �gure 8.6 shows that both CAN lines are missing reference data from the
steering wheel at samples from 300 to 400. And the node uses the last reference
during the period. According to Case 4 in chapter 3.2 the result is correct.

59

8.0.7 Test 5

This test is made to ensure that the system will continue working after either
master or slave dies on a node. And test that the working PIC will reset the
one that died.

The results for the test with the master dead are plotted at �gure 8.7.

0 50 100 150 200 250 300 350 400 450 500
50

100

150

200

250

300
Master on one wheel dies

Samples

A
ng

le
 [D

eg
re

es
]

Steering Wheel reference master bus
Wheel master bus

0 50 100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

Samples

A
ng

le
 [D

eg
re

es
]

Steering Wheel reference slave bus
Wheel slave bus

Figure 8.7: The two graphs shows the reference from the steering wheel to
the node and the motor position from the node at the two CAN
bus lines(master at the top and slave at the bottom).

The �gure show that master on a wheel stop sending data for a periode and
then recovers. This could indicate that it has been reset by the slave as it
should be. While the master is down the slave continues working and follows
the reference from the steering wheel. According to Case 5 in chapter 3.2 the
result is correct.

The result is similar where the slave dies and is plotted in �gure 8.8.

60 Chapter 8: Test results

0 100 200 300 400 500 600 700
50

100

150

200

250
Slave on one wheel dies

Samples

A
ng

le
 [D

eg
re

es
]

Steering Wheel reference master bus
Wheel master bus

0 100 200 300 400 500 600 700
50

100

150

200

250

Samples

A
ng

le
 [D

eg
re

es
]

Steering Wheel reference slave bus
Wheel slave bus

Figure 8.8: The two graphs shows the reference from the steering wheel to
the node and the motor position from the node at the two CAN
bus lines(master at the top and slave at the bottom).

8.0.8 Test 6

This test was made to ensure that the system would continue working if a wire
to one AD converter was disconnected.

The result for the test with the wire to the AD converter at the master PIC
disconnected are plotted at �gure 8.9.

The two graphs shows that the disconnected AD converter causes no error to
the system. According to Case 7 in chapter 3.2 the result is correct.

The result for the test with the wire to the AD converter at the slave PIC
disconnected are plotted at �gure 8.10.

The result is the same as the result from the master.

61

0 100 200 300 400 500 600
100

150

200

250

300
AD converter disconnected on master wheel

Samples
A

ng
le

 [D
eg

re
es

]

Steering Wheel reference master bus
Wheel master bus

0 100 200 300 400 500 600
100

150

200

250

300

Samples

A
ng

le
 [D

eg
re

es
]

Steering Wheel reference slave bus
Wheel slave bus

Figure 8.9: The two graphs shows the reference from the steering wheel to
the node and the motor position from the node at the two CAN
bus lines(master at the top and slave at the bottom).

0 100 200 300 400 500 600 700
100

150

200

250

300
AD converter disconnected on slave wheel

Samples

A
ng

le
 [D

eg
re

es
]

Steering Wheel reference master bus
Wheel master bus

0 100 200 300 400 500 600 700
100

150

200

250

300

Samples

A
ng

le
 [D

eg
re

es
]

Steering Wheel reference slave bus
Wheel slave bus

Figure 8.10: The two graphs shows the reference from the steering wheel to
the node and the motor position from the node at the two CAN
bus lines(master at the top and slave at the bottom).

62 Chapter 8: Test results

8.0.9 Test 7

The test is made to ensure that the wheel nodes remain at the same position
when receiving wrong data or on data from the steering wheel.

The result for the test with the master CAN line disconnected and corrupted
data at slave CAN line are plotted at �gure 8.12.

0 100 200 300 400 500 600 700 800 900 1000
50

100

150

200

250

300

350

400

450

500

550
Wrong data from steering wheel

Samples

A
ng

le
 [D

eg
re

es
]

Steering Wheel reference slave bus
Wheel master bus

Figure 8.11: The graph show the reference from the steering wheel to the node
and the motor position from the node.

At the graph it can be seen that corrupted data are send from the steering wheel
from around 150 to around 675 samples. The node holds its motor position at
the last correct received reference. When correct data from the steering wheel
are sent again the wheel follows. According to Case 3 in chapter 3.2 the result
is correct.

The result for the test with the slave CAN line disconnected and corrupted
data at slave CAN line are plotted at �gure 8.11.

The result is the same as the result from the master.

63

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600
Wrong data from steering wheel

Samples

A
ng

le
 [D

eg
re

es
]

Steering Wheel reference master bus
Wheel master bus

Figure 8.12: The graph show the reference from the steering wheel to the node
and the motor position from the node.

Bibliography

[cdrom] Enclosed CDROM for this project

[dc] Franklin, Powell & Workman Digtal Control of Feedback System
Addison Wesley ISBN: 0201820544

[fc] Franklin, Powell & Emami-Naeini Feedback Control of Dynamic
System Addison Wesley ISBN: 0201527472

[fdm] FDM Alt om bilen Det Bedste fra Reader's Digest A/S, København
1974.

[PICdata] Microchip Technology Inc. PIC18FXX8 Data Sheet U.S.A., Mi-
crochip Technology Inc., 2002.

[PICpro] Microchip Technology Inc. PIC18FXX2/FXX8 Programming Spec-
i�cations U.S.A., Microchip Technology Inc., 2001.

[CAN] Robert Bosch GmbH CAN Speci�cation Version 2.0 Stuttgart,
Germany: Bosch, 1991.

[hsf] http://www.howstu�works.com/steering.htm, 2002.

64

AppendixA

Flow Charts - Wheel Node

On the following pages a number of �owcharts for the wheel node software
is representated. The �rst �owchart is the main loop. The main loop runs for
every sample in the A/D converter which is 20 times per second (see chapter 5).

CAN_MSG = 1

Is tempData != −1
no

yes

MSG = 1

no

yes

DF = 1

Take MUX
control

Is tempData != −1

CAN_MSG = 1

MSG = 1

Synchronize

Send curValMot
on CAN

SLAVE

DF = 0MSG = 0

MASTER

loop iteration
Run control

loop iteration

Run gotimerRun gotimer

STARTSTART

Run control

DF = 1

Synchronize

Send curValMot
on CAN

Figure A.1: Wheel node main loop.

65

66 Appendix A: Flow Charts - Wheel Node

STOP

no

no

yes
Received Alarm?

yes
Message received?

MASTER/SLAVE

START

Alarm
Handling

Save message

Figure A.2: ISR for message Reception in the wheel.

START

MASTER/SLAVE

Retrieve A/D
converter value

on motor outputs

CAN_MSG = 0

data
Synchronize

STOP

Calculate
control signal

Apply signals

Figure A.3: Control loop.

67

STO++

yes

RDI?

Received No STO

no

yes
resetTime−− Clear RDO resetTime−− Clear RDO

= syncData
previousSyncData

= syncData
previousSyncData

STO overflow

valid range?
mData insideyes

no

syncData =
tempData

Clear STO

MTO

overflow?

resetTime > 0 and
resetFlag = 1? resetFlag = 1?

resetTime > 0 andyes

overflow?

No

to slave

Stop SCK

Negate RDO

MTO++

yes

RDI?

Received No

Start SCK

Receive slave
temp.data

to master
Send temp.data

Send syncData

Negate RDO

Clear MCREQC

Start SCK

No

Received No

Yes

sync.data?

no

STOP

STOP

Clear MTO

MTO overflow

valid range?
sData insideyes

no

syncData =
tempData

yes

Stop SCK

Clear STO

Compare data

Clear MTO

Double error
test

resetTime = 0resetTime = 0

Negate RDO

yes

Negate RDO

START

Assert RDO

MASTER

START

SLAVE

Assert RDO

tempData = −1 tempData = −1

Figure A.4: Synchronize data.

68 Appendix A: Flow Charts - Wheel Node

Send CAN alarm
"We’re doomed"

Send CAN alarm
w. retransm. req.

STOP

START

double error
Received

flag?

Yes

canCount = 10?

No

Yes

Clear canCount

canCount ++

Send CAN alarm
w. retransm. req. adcCount = 10?

Double err. type
= 1? adcCount ++

Clear adcCount

Yes

No

No No

Yes

Figure A.5: Double Error test (runs on slave).

69

valid range?

sData inside

No

Yes

No

Yes data=
(mData +sData)/2

No

data
syncData=

sData=

mData?

yes

DF = 1

H

G

MSG = 1

CAN_MSG = 0?

No

Yes

doubleErrorType
= 1

valid range?

mData inside

Clear canCount

mData
syncData =

Clear canCount

Clear adcCount

Clear canCount

Clear adcCount

sData
syncData=

mData indside

valid range?

No

Yes

mData
syncData=

sData
syncData=

Clear canCount

Clear adcCount

determineDoubleErrorType

determineDoubleErrorType

Clear adcCount

Clear canCount

syncData = mData

No

Clear canCount

Clear adcCount Clear adcCount

Yes

mData inside

valid range?

Yes

No

Yes

No
MSG = 1?

MSG & DF = 0?
Yes

No

A B C

F

D

E

sData inside

valid range?

Yes

No

CAN_MSG = 0?
Yes

No

doubleErrorType
= 0

doubleErrorType
= 1

error handling
Double

STOP

doubleErrorType
= 0

error handling
Double

START

MSG & DF = 1?

Figure A.6: Compare received data.

70 Appendix A: Flow Charts - Wheel Node

START

Send CAN alarm
"We’re doomed"

Send CAN alarm
w. retransm. req.

Send CAN alarm
"We’re doomed"

Set double error
flag

Double err. type =1

Start SCK

Stop SCK

adcCount ++

adcCount = 10?

no

yes

Send CAN alarm
w. ADC err.

Start SCK

Stop SCK

canCount ++

canCount = 10?

no

yes

STOP

Send flag
byte

on SPI

Send flag
byte

on SPI

no

yes

Figure A.7: Double Error Handling (runs on master).

71

Send alarm
frame on CAN

Reset

STOP

START

Hand over
MUX control

Figure A.8: Interrupt Subroutine for MCREQ (runs on master).

Send alarm
frame on CAN

Reset

STOP

START

Figure A.9: Interrupt Subroutine for STO interrupt (runs on slave).

72 Appendix A: Flow Charts - Wheel Node

Send alarm
frame on CAN

resetTime = 40

START

Toggle MCREQ

STOP

Figure A.10: MTO Over�ow Error (running on slave).

Send alarm
frame on CAN

resetTime = 40

START

Toggle SIP

STOP

Figure A.11: STO Handling (running on master).

73

in buffer

noA/D conversion
done?

yes

Get ADC value

START

Start ADC

MASTER SLAVE

STOPSTOP

in buffer

noA/D conversion
done?

yes

Get ADC value

START

Start ADC

Figure A.12: Retrieve A/D converter value.

START

STOP

CANerror = 1?

Doomed = 1?

ADCerror = 1?

steeringWheel = 1?

Yes

Yes

Yes

No

No

No

Yes

No

Yes

No

motor2 = 1? Retrans data to
motor 2

Retrans data to
steering wheel

Figure A.13: Alarm handling for wheel 1.

74 Appendix A: Flow Charts - Wheel Node

START

STOP

CANerror = 1?

Doomed = 1?

ADCerror = 1?

steeringWheel = 1?

Yes

Yes

Yes

No

No

No

Yes

No

Yes

No

motor1 = 1? Retrans data to
motor 1

Retrans data to
steering wheel

Figure A.14: Alarm handling for wheel 2.

75

init = 0

no
VLTOC overflow?

yes

VLTOC++

init = 0?

yes

nono

yes

OTG = 1?

GO = 1

Is VLTOC =

VLTOCMAX resetFlag = 0

yes

no

Clear VLTOC

GO = 0

STOP

Reload MLT

START

No

Yes

MLT overflow?

Figure A.15: The sub-function gotimer().

AppendixB

Flow Charts - Steering Wheel

On the following pages a number of �owcharts for the steering wheel node
software is representated. The �rst �owchart is the main loop. The main loop
runs for every sample in the A/D converter which is 20 times per second (see
chapter 5).

Run gotimer

Send refValMot1
and refValMot2

messages

Take MUX
control

SLAVE

DF = 0

Send refValMot1
and refValMot2

MSG = 0

MASTER

Receive
messages
Receive

Run control
loop iteration

positions
Compute motor

START

Run control
loop iteration

positions
Compute motor

Run gotimer

START

Figure B.1: Steering wheel node main loop.

76

77

curValMot2

c.sw
c.m2 != c.m1 !=

c.m2 = c.sw?
c.m2 != c.m1 &

c.m1 = c.sw?
c.m1 != c.m2 &

START

refValSw =

STOP

no

no

no

yes

yes

yes

clear PDC

refValSw =

refValMot2 =
curValSw

curValSw

curValSw

refValMot1 =

curValMot1 =curValMot1 =curValMot1 clear PDCrefValMot2 =refValMot1 =refValSw =

clear PDCcurValMot2 =
refValMot2 =refValMot1 =

curValMot2 =

yes

no

yes

clear PDC

Toggel PD

PDC++

PD=1?

no

refValMot2
refValSw =

refValMot1
refValMot2 =

refValMot1
refValSw =

refValMot2
refValMot1 =

PDC=5?

Figure B.2: Compute motor positions. Here c.m* is the same as curValMot*
and c.sw is curValSw.

78 Appendix B: Flow Charts - Steering Wheel

SLAVEMASTER

Synchronize
(tempMot1)

MOTOR = 0

curValMot1 =
syncData

Yes

No

DF = 1

If tempMot1 != −1

Yes

No

MSG = 1

If tempMot1 != −1

CAN_MSG = 1

If tempMot2 != −1

Synchronize
(tempMot2)

curValMot2 =
syncData

MSG = 0

MOTOR = 1

CAN_MSG = 0

START

syncData

CAN_MSG = 1

If tempMot2 != −1

Synchronize
(tempMot2)

curValMot2 =
syncData

DF = 0

MOTOR = 1

CAN_MSG = 0

START

Synchronize
(tempMot1)

MOTOR = 0

curValMot1 =

STOP

CAN_MSG = 1

DF = 1

STOP

CAN_MSG = 1

MSG = 1

Figure B.3: Message Reception.

79

START

MASTER/SLAVE

Retrieve A/D
converter value

on motor outputs

CAN_MSG = 0

data
Synchronize

STOP

Calculate
control signal

Apply signals

Figure B.4: Control loop.

80 Appendix B: Flow Charts - Steering Wheel

STO++

yes

RDI?

Received No STO

overflow?

No

= syncData
previousSyncData

= syncData
previousSyncData

STO overflow

valid range?
mData insideyes

no

syncData =
tempData

Clear STO

MTO

overflow?

resetTime > 0 and
resetFlag = 1? resetFlag = 1?

resetTime > 0 and

Assert RDO

MASTER

Assert RDO

SLAVE

yes

nono

yes yes

Clear RDO

to slave

Stop SCK

Negate RDO

MTO++

yes

RDI?

Received No

Start SCK

Receive slave
temp.data

to master
Send temp.data

Send syncData

resetTime−−Clear RDOresetTime−−
yes

nono

sync.data?

Yes

NoReceived

No

Start SCK

Clear MCREQC

Negate RDO

Clear MTO

MTO overflow

valid range?
sData insideyes

no

syncData =
tempData

yes

Negate RDO

yes

Negate RDO

Stop SCK

Clear STO

Compare data

Clear MTO

STOP

STOP

resetTime = 0 resetTime = 0

test
Double error

tempData = −1

tempMot2 = −1

tempMot1 = −1

tempData = −1

START

If Motor = 0 and
CAN_MSG = 1 CAN_MSG = 1

If Motor = 0 and

START

tempMot2 = −1

tempMot1 = −1

Figure B.5: Synchronize data.

81

Send CAN alarm
"We’re doomed"

Send CAN alarm
w. retransm. req.

STOP

START

double error
Received

flag?

Yes

canCount = 10?

No

Yes

Clear canCount

canCount ++

Send CAN alarm
w. retransm. req. adcCount = 10?

Double err. type
= 1? adcCount ++

Clear adcCount

Yes

No

No No

Yes

Figure B.6: Double Error test (runs on slave).

82 Appendix B: Flow Charts - Steering Wheel

=
 0

do
ub

le
E

rr
or

T
yp

e

N
o

Y
es

C
A

N
_M

SG
 =

 0
?

D
F

=
 1

m
D

at
a

in
si

de
N

o

Y
es

va
lid

 r
an

ge
?

ye
s

m
D

at
a?

sD
at

a
=

sy
nc

D
at

a
=

da
ta

N
o

do
ub

le
E

rr
or

T
yp

e

m
O

D
M

=
 1

do
ub

le
E

rr
or

T
yp

e

Y
es

N
o

C
A

N
_M

SG
 =

 0
?

M
SG

 =
 1

I

J

G
K

H
L

D
ou

bl
e

er
ro

r
ha

nd
lin

g

=
 1

(m
D

at
a

+
sD

at
a)

/2
da

ta
 =

Y
es

N
o

Y
es

N
o

sD
at

a
in

si
de

va
lid

 r
an

ge
?

va
lid

 r
an

ge
?

m
D

at
a

in
si

de

ye
s

C
le

ar
 c

an
C

ou
nt

sy
nc

D
at

a
=

sD
at

a
sy

nc
D

at
a

=
m

D
at

a

C
le

ar
 a

dc
C

ou
nt

C
le

ar
 c

an
C

ou
nt

C
le

ar
 a

dc
C

ou
nt

C
le

ar
 c

an
C

ou
nt

C
le

ar
 a

dc
C

ou
nt

C
le

ar
 c

an
C

ou
nt

sy
nc

D
at

a
=

m
D

at
a

C
le

ar
 a

dc
C

ou
nt

C
le

ar
 c

an
C

ou
nt

sy
nc

D
at

a
=

C
le

ar
 a

dc
C

ou
nt

pr
ev

io
us

Sy
nc

D
at

a
=

 s
yn

cD
at

a

M
SG

 &
 D

F
=

 1
?

de
te

rm
in

eD
ou

bl
eE

rr
or

T
yp

e

de
te

rm
in

eD
ou

bl
eE

rr
or

T
yp

e

de
te

rm
in

eD
ou

bl
eE

rr
or

T
yp

e

C
le

ar
 a

dc
C

ou
nt

C
le

ar
 c

an
C

ou
nt

sy
nc

D
at

a
=

sD
at

a
sy

nc
D

at
a

=
m

D
at

a

Y
es

N
o

va
lid

 r
an

ge
?

m
D

at
a

in
si

de
sD

at
a

N
o

Y
es

N
o

Y
es

va
lid

 r
an

ge
?

m
D

at
a

in
si

de

Y
es

C
le

ar
 a

dc
C

ou
nt

C
le

ar
 a

dc
C

ou
nt

C
le

ar
 c

an
C

ou
nt

C
le

ar
 c

an
C

ou
nt

sO
D

M
 =

 1
?

N
o

ye
s

N
o

sO
D

M
 =

M
SG

 =
 1

?

Y
es

N
o

va
lid

 r
an

ge
?

sD
at

a
in

si
de

N
o

Y
es

va
lid

 r
an

ge
?

sD
at

a
in

si
de

E

D

FC
B

A

N
o

Y
es

M
SG

 &
 D

F
=

 0
?

D
ou

bl
e

er
ro

r
ha

nd
lin

g

=
 0

do
ub

le
E

rr
or

T
yp

e

ST
O

P

ST
A

R
T

D
ou

bl
e

er
ro

r
ha

nd
lin

g

=
 1

do
ub

le
E

rr
or

T
yp

e
=

 0
do

ub
le

E
rr

or
T

yp
e

N
o

Y
es

C
A

N
_M

SG
 =

 0
?

Figure B.7: Compare received data.

83

START

Send CAN alarm
"We’re doomed"

Send CAN alarm
w. retransm. req.

Send CAN alarm
"We’re doomed"

Set double error
flag

Double err. type =1

Start SCK

Stop SCK

adcCount ++

adcCount = 10?

no

yes

Send CAN alarm
w. ADC err.

Start SCK

Stop SCK

canCount ++

canCount = 10?

no

yes

STOP

Send flag
byte

on SPI

Send flag
byte

on SPI

no

yes

Figure B.8: Double Error Handling (runs on master).

84 Appendix B: Flow Charts - Steering Wheel

Send alarm
frame on CAN

Reset

STOP

START

Hand over
MUX control

Figure B.9: Interrupt Subroutine for MCREQ (runs on master).

Send alarm
frame on CAN

Reset

STOP

START

Figure B.10: Interrupt Subroutine for STO interrupt (runs on slave).

85

Send alarm
frame on CAN

resetTime = 40

START

Toggle MCREQ

STOP

Figure B.11: MTO Over�ow Error (running on slave).

Send alarm
frame on CAN

resetTime = 40

START

Toggle SIP

STOP

Figure B.12: STO Handling (running on master).

86 Appendix B: Flow Charts - Steering Wheel

in buffer

noA/D conversion
done?

yes

Get ADC value

START

Start ADC

MASTER SLAVE

STOPSTOP

in buffer

noA/D conversion
done?

yes

Get ADC value

START

Start ADC

Figure B.13: Retrieve A/D converter value.

87

handling
AlarmAlarm?

Motor 1 data?

Yes

No

Yes

No

data =
tempMot2 tempMot1

data =

M1C = 0

mODM1 = 0

Assert mODM1

M1C = 5

Assert mODM2

tempMot2 tempMot1
data =

M1C = 0

ODM1 = 0

Assert ODM1

M1C = 5

Assert ODM2

M2C = 5

No

Yes

No

Yes

M1C \geq 5?

M2C \geq 5?

ODM2 = 0

M2C = 0

M1C++ M2C++

data =

M2C = 5

No

Yes

No

Yes

M1C \geq 5?

M2C \geq 5?

mODM2 = 0

M2C = 0

M1C++ M2C++

handling
AlarmAlarm?

Motor 1 data?

Yes

No

Yes

No

START

Motor 2 data?

No

Yes

STOP

START

Master:

Motor 2 data?

No

Yes

STOP

Slave:

Figure B.14: ISR for CAN message reception. The mODM* �ags are a global
variable locally on the master PIC. The slave sets its ODM* �ags
in the SPI byte.

88 Appendix B: Flow Charts - Steering Wheel

START

STOP

CANerror = 1?

Doomed = 1?

ADCerror = 1?

Yes

Yes

Yes

No

No

No

Yes

No

Yes

No

motor2 = 1? Retrans data to
motor 2

Retrans data tomotor1 = 1? motor 1

Figure B.15: Alarm handling for the steering wheel node.

89

init = 0

no
VLTOC overflow?

yes

VLTOC++

init = 0?

yes

nono

yes

OTG = 1?

GO = 1

Is VLTOC =

VLTOCMAX resetFlag = 0

yes

no

Clear VLTOC

GO = 0

STOP

Reload MLT

START

No

Yes

MLT overflow?

Figure B.16: The sub-function gotimer().

AppendixC

Bootloader

The basic functionality of the bootloader is to enable programming the PIC
while it is mounted in the circuit board. The alternative is to remove the PIC
from the circuit and use a dedicated programming device. This is both time
consuming and the risk of damage on the PIC is greater. When using the
bootloader the data is transfered to the PIC via the serial port of a standard
PC. The transfer is done by using a terminal program (Teraterm Pro). In the
terminal program the serial port should be set up to 19200 Baud, 8 bit data,
1 stop bit and XON/XOFF enable. A delay of 10 ms after each transmitted
line should be set up in the ternminal. The program that needs to be trans-
fered is compiled to the hexadecimal format and send to the PIC in an ASCII
representation of the hex �le.

It is important to notice that the bootloader occupy space in the start of the
memory space of the PIC. This means that the interrupt vectors that by default
are placed in this part of the memory need to be remapped. This means that
an additional branch instruction is needed. In the case with the PIC18F458
the interrupt vectors are by default placed in address 0x008 and re-mapped to
address 0x220.

C.0.10 Description of the Bootloader

The bootloader is a small assembler program consisting of �ve main parts:

An erase part: This part of the program clears an area of the memory in
the PIC. This is done since it is not possible to overwrite a part of the
memory.

A write part: This part writes the new data in the just cleared memory at
the speci�ed location.

A �ow control part: This part makes a software handshake with the PC
that transfers the data to the PIC. This ensures that the PIC is not
overloaded with data.

A data validation part: This part consists of some di�erent subparts used
di�erent places in the program. The parts are a blank test that tests if

90

91

the memory location in which the write function wants to write is blank.
A validation part that ensures that the right data are written in the right
memory location. A checksum test that ensures that the received data
are not corrupted.

An ASCII to hexadecimal conversion: Since the data for the bootloader
to write is transfered in an ASCII representation of the hex �le, the data
needs to be converted back to the hex format.

When the bootloader is enabled it sets up the needed registers to enable the
serial communication. After this is done it starts waiting for the start-of-line
character to arrive. When this arrives the bootloader reads the length of the
received data and tests if the memory area needed is blank. If not, it clears
two memory blocks of 64 kB. The reason for this is that the minimum memory
that can be cleared at a time is 64 kB. Further, it tests if the received data has
a valid checksum. After this the data are written to the memory and hereafter
the data written are veri�ed. This goes on until the end-of-record character
is detected. When the last part is successfully written this is indicated by the
bootloader.

AppendixD

Bus Sniffing

To monitor the tra�c on the CAN-busses a PC with a CAN-PCI-card is con-
nected to the busses. The card is a CAN-AC2-PCI card from Softing which
contains two CAN-drivers. Together with the hardware was a test program that
tests if the CAN-drivers sends data to each other when they are connected with
a standard CAN-cable.

The sourcecode for the testprogram and the necesary libraries was included
with the testprogram. This makes it easy to make a testprogram for this project
purposes, just by changing a few lines in the sourcecode.

The main thing the testprogram needs to do is to poll the two CAN-buses,
write the tra�c on the screen and save the data in a text �le. It means that all
other functions in the testprogram are disabled. The other adjustments made
in the program is the outline on the screen when it recieves a message. Here
you see some typical screen outcome from the testprogram:

Recieved from Masterbus Id 2 Data 1015 Hex 3 F7

Recieved from Slavebus Id 4 Data 11 Hex B

Recieved from Masterbus Id 0 Errorcode 64

Recieved from Slavebus Id 0 Errorcode 32

The �rst message was sent on the Masterbus with Id 2 and the integer value
1015, which is converted from the Hex value 03F7. The second message is data
on the Slavebus and the third and fourth message is errormessages (Id 0) and
they shows the errorcode. All data is also saved in a text �le. To minimize the
�le not all text written on the screen is saved in the �le. Here is a few typical
lines from the from the text �le:

Master Id 2 Data 1015

Slave Id 4 Data 11

Master Error 64

Slave Error 32

Beside the text-�le the program also saves the data in a comma seperated �le
(.csv) �le, that only contains the raw data, so it is possible to make plots for
the bus tra�c in e.g.MatlabTM .

92

Appendix E

Schematics

Here is the schematics of the hardware wheel nodes and the steering wheel
node.

93

94 Appendix E: Schematics

Figure E.1: Schematic for the steering wheel node.

95

Figure E.2: Schematic for the wheel node.

Appendix F

CD

When you insert the CD in your computer a full screen html popup will appear
and you will see a menubar on your left with the following items:

� Absract

� Article

� Worksheets

� Datasheets

� Schematics

� Sofware

� Test

� The Group

� Pictures

� Video

� Poster

If the CD does not make a popup run index.html.

96

	Contents
	Chapter 1 - Introduction
	Chapter 2 - Analysis
	2.1 CAN-bussen
	2.1.1 Frame-typer
	Data frame
	Remote frame
	Error frame
	Overload frame

	2.1.2 Fejlhåndtering

	2.2 Introducing Fault Tolerance
	2.2.1 Hardware Fault Tolerance
	2.2.2 Software Fault Tolerance
	2.2.3 Error Detection
	2.2.4 Damage Confinement
	2.2.5 Error Recovery
	2.2.6 Fault Treatment and Continued Service

	2.3 Motor Control Rights

	Chapter 3 - Demands
	3.1 Protocol Description
	3.1.1 CAN Messages
	3.1.2 Alarm Handling

	3.2 General Cases

	Chapter 4 - Hardware
	4.1 The Three Nodes Physical Description

	Chapter 5 - PID Controllers For The Motors
	5.1 Motor Modulation
	5.2 Controller Design
	5.3 Discretization and simulations
	5.3.1 ZOH Discretization

	5.4 Test Of Control Algorithm
	5.5 Conclusion

	Chapter 6 - Software Description
	6.1 Initialization
	6.2 Main Program
	6.3 Assumptions
	6.3.1 SPI frame
	6.3.2 Flags and registres

	6.4 The General Cases Software Solution
	6.5 Header Description
	6.5.1 Sub Routine Headers
	6.5.2 Init Functions
	6.5.3 Other Functions

	6.6 Software Functions
	6.6.1 PIC setup
	6.6.2 Functions

	Chapter 7 - Test Specification
	Chapter 8 - Test results
	8.0.3 Test 1
	8.0.4 Test 2
	8.0.5 Test 3
	8.0.6 Test 4
	8.0.7 Test 5
	8.0.8 Test 6
	8.0.9 Test 7

	Bibliography
	Appendix A - Flow Charts - Wheel Node
	Appendix B - Flow Charts - Steering Wheel
	Appendix C - Bootloader
	C.0.10 Description of the Bootloader

	Appendix D - Bus Sniffing
	Appendix E - Schematics
	Appendix F - CD

