
PROTOTYPIN G A FAULT-TOLERAN T CAN BUSBASED DISTRIBUTED
SERVOSYSTEM

Michael Skipper Andersen, Jørgen Friis, Niels Nørregård Hansen, Johnny Jensen,
Rene Just Nielsen and Michael Pedersen, Aalborg University

Department of Control Engineering, group 731

Abstract— In conventional car power steerings the steer-
ing arms on the hinged wheels are mechanically connected
by a track rod. When the steering wheel is turned the
rotation from the steering column, assisted by a hydraulic
servo-cylinder moves the track rod sideways, turnin g both
wheels. This construction has the advantage of being
simple and cheap. I t is, however, quite space consuming
and vibration sfrom thewheelsaretransmitted through the
steering column to the steering wheel. This raises the idea
of a distri buted servosystem, utilizin g electric actuators to
position the wheels and for force feedback to the steering
wheel. The objective of this paper is to present and review
the prototype of a duplicated Controller Area Network
(CAN) bus based fault-tolerant distri buted power steering,
especially considering the pitfall s of such a system.

A prototype of a distri buted servosystem has been
tested with different scenarios and fault cases. The node
connections and fault tolerance work satisfactorily and
acts as expected, but the actuators have proven to be
underdimensioned.

Keywords— distri buted systems, power steering, CAN
bus, fault tolerance, redundancy, robustness.

I . INTRODUCTION

CAR steering gear isoften equipped with ahydraulic
servosystem to assist the driver turning the steering

wheel by adding extra torque to the steering column.
This aid is particularly useful when a vehicle moves at
low speeds and much torque must be used to move the
wheels.

The key components in a power steering are atorsion
bar that measures the torque applied on the steering
wheel by the driver, a pump that generates the hydraulic
power and a rotary valve that directs the pressurized
hydraulic fluid to the right side of a piston on the track
rod. Together, these components make up a reliable and
relatively simple system. If one part fails to work, the
steering gear can stil function without the servomecha-
nism.

The two main drawbacks of such a system are that
vibrations from the wheels are transfered to the steering
wheel and that the track rod and the steering column
occupy space across the engine compartment.

This suggests the concept of a distributed steering
gear with independent actuators to position the vehicle’s
wheels and a steering wheel to dictate the positions of
these. To make the distributed steering gear act like
a mechanical one, the steering wheel should have a
force-feedback behaviour to help the driver sense forces
applied to the wheels, e.g. if the vehicle bumps into a
kerb.

In such a system, special care should be taken to
ensure robustness so that the correlation between the
steering wheel and the wheel position is maintained at
all times. For that reason, it is evident that actuator
positions must always be computed correctly and that
communication between the network nodes attached to
the three actuators should always be possible even in the
case of a partial breakdown of the network.

II . METHODS AND MATERIAL

The main considerations made in connection with the
developed prototype of a distributed power steering were
the maintenance of the connection between the three
network nodes and the reliability of correctly computed
values in each node.

A model of a power steering has been constructed. It
consists of a modified off-the-shelf PC force feedback
steering wheel and two electric servomotors, each rep-
resenting a wheel actuator.

Each network node is based on two Peripheral In-
terface Controllers (PICs) (PIC18F458) with integrated
pulse-width modulator (PWM), analog-to-digital con-
verter (ADC), serial peripheral interface (SPI), RS232
serial interface, and CAN controller.

The CAN bus with CAN protocol version 2.0A (us-
ing 11 bit identifiers to address the network nodes)
was chosen as the communication channel between the
network nodes. It features a good quality of service
(QoS) in terms of packet loss, high noise immunity,
relative throughput (that is, a high priority packet will
always win the bus arbitration over packets with lower
priorities), and automatic retransmission of erroneous
packets. Moreover, if one CAN controller repeatedly
transmits or receives defective packets, it puts itself in



a bus-off state and does not send anything on the CAN
bus until 128 occurrences of 11 consecutive recessive
bits have been registered on the bus.

to ensure that a fault can always be announced on
the bus and so that the nodes can take proper action
in accordance to this alarm, alarm frames are given the
highest priority on the CAN bus.

To preserve the network communication between the
network nodes even in case of a cable breakdown, the
CAN bus and its contents have been duplicated. The
double cabling should be wired in different places to
minimize the possibility of breaking both cables simul-
taneously.

Likewise, the two PICs on each network node form
a redundant system, intercommunicating via an SPI and
with either PIC connected to one of the two CAN lines.
The intercommunication ensures that both use the same
data and run synchronously through the software.

One PIC is configured as a master and the other as
a hot-standby slave. The master controls a multiplexer,
selecting which PIC should control the motor. If one PIC
fails to work correctly the other one should take over the
motor control and continue.

The system is illustrated in figure 1 where the “CAN
packet sniffer” is a standard Personal Computer (PC)
registering all CAN messages on the bus and saving these
in a log file.

C
A

N
 b

us
 2

Left wheel node

Steering wheel node

Right wheel node

CAN bus 1

Slave

Master

Slave

MasterM
ul

tip
le

xe
r

M
ul

tip
le

xe
r

Slave

Master

M
ul

tip
le

xe
r

CAN interface

PC

CAN interface

M

M

M

CAN packet sniffer

Fig. 1. Distributed architecture of power steering system with
redundant PICs and CAN bus.

To delimit the problem, the fault-tolerant system
should be able to handle Single Point of Failure (SPF)
situations only. This assumes that only one error will
occur at a time. Moreover, the following assumptions
have been made.

� The SPI communication is error-free.
� Simple components such as CAN drivers, multi-

plexers and position feedback potentiometers are
very unlikely to fail.

� Position feedback from the actuators is always
available.

� Supply voltage is always present and adequate.
� An interrupt request can always be served if the

program runs into a deadlock.

A. Steering System Functionality

To simplify the system, the Ackermann steering ge-
ometry normally used in vehicles [5] has been omitted in
the prototype design, and both wheel nodes (WNs) are
given the same angular reference by the steering wheel
node (SWN).

The SWN broadcasts a reference value to the WNs 40
times per second, and when they have intercepted this
reference and attempted to adjust the actuators to this
position, they return their measured wheel angle to the
SWN.

The functionality of the system can be classified into
four cases.

1) If the measured angles of the WNs and the SWN
are equal, nothing is done.

2) If the measured angles of the WNs are equal but
different from the angle of the SWN, this angle is
used as a reference for the WNs.

3) If the measured angles of WN1 and the SWN are
equal but are different from the measured angle of
WN2, the SWN and WN1 uses the angle of WN2
as a reference angle, vice versa if the angles of
SWN and WN2 are equal.

4) If all three angles differ, the SWN and WN1 will
attempt to adjust their actuators to the position of
WN2 over 5 samples. If they do not succeed, the
SWN and WN2 will attempt to track to the position
of WN1.

In case one, both wheels have the desired position and
the previous valid reference values are re-applied to the
actuator.

Case two represents the situation where the driver
turns the stering wheel to alter the direction of the
vehicle.

In case three the differing wheel angle indicates that
the wheel in question is forced into a certain position,
e.g. if it bumps into a kerb. The driver then senses this
as the steering wheel, along with the other wheel, will
attempt to change their positions.

If case four should happen, this, in a mechanical
steering gear, would mean that both the steering column
and the track rod are broken. In the distributed system
this is allowed for up to 2�125 milliseconds because
the three actuators are relaxed most of the time and
thus susceptible to exterior forces. The only time when



voltage is applied to them is in the control loop part of
the software.

In all four cases the term “equal” is not exactly used
in the software. Instead, a small tolerance has been
introduced to allow some numerical resilience.

The software on all three network nodes is imple-
mented as a cyclic main loop, calling a number of
functions 40 times per second.

B. Actuator Control

DC servomotors have been chosen as actuators for the
wheels and steering wheel. To control the motor speeds,
the PWM signals from the PICs have been fed through an
H-bridge amplifier and applied to the motors. Each motor
is fitted with a potentiometer for position feedback, and
the output voltage has been fed into the ADC inputs of
the respective master and slave PIC.

Since the master and the slave PIC on each node
perform the same motor control signal computations, but
only one at a time can actually control the motor attached
to the node, a multiplexer is used to direct the control
signal from one PIC to the motor. At the beginning of
each main loop iteration, the master takes the motor
control and, if during the course of iteration the master
fails to work correctly, the slave takes over the motor
control.

Since no supervisory arbiting circuit has been im-
plemented to detect master/slave faults, the master and
slave PIC themselves must decide which should have the
motor control rights.

One solution to this problem has been to make a
simple logic circuit allowing only one PIC at a time to
takethe control rights. This solution, however, poses the
question of which PIC should have the right to overrule
the other in case one of them makes a faulty attempt to
take the control rights.

The chosen solution is to let the master control the
multiplexer and, in case that the slave discovers a fault
or missing response on the master, the slave sends an
interrupt request to the master which hands over the
motor control to the slave.

This solution is based on the assumption that it is
always possible for the master to run an interrupt service
routine (ISR), even when the main program has run into
a deadlock. This is taken as a fact since the detection
and handling of interrupts is handled on the hardware
level of the PIC.

C. Fault Handling

A number of possible runtime faults have been taken
into account in the prototype.

� Missing synchronization and communication be-
tween master and slave.

� The master and slave do not use the same data.
The PICs perform handshakes at certain program

breakpoints to ensure that they both enter the same
program segments simultaneously. If one PIC fails to
respond in the handshaking procedure, the other one will
invoke an interrupt request on the failing PIC, causing it
to reset and go to the beginning of the main loop where
it waits for the other one to start over in a new iteration.
Moreover, when the master is interrupted as the result
of an error, it hands over the motor control rights to the
slave.

Both PICs on each network node run through approx-
imately the same algorithms and to ensure that they
use the same data (i.e. received CAN messages and
measured actuator positions) throughout the program,
they exchange these data at certain breakpoints. If the
data differ, the master decides which are correct from
the following criteria. If one PIC has no data, data from
the other PIC will be used if they are valid. Otherwise,
an alarm will be broadcasted on the CAN bus and the
previous valid data are used. This is derived from the
philosophy that it is better to use old data than no data.
The data interchanged between the two PICs consist of
two data bytes and one byte for flags. The flags indicate,
among other things, which type of data is contained in
the data byte and whether an error has occured.

D. Software

On each PIC a bootloader has been written and
installed to make it easier to download software to the
nodes during the prototyping process. The bootloader
connects the PICs to the serial port of a PC utilizing
their integrated RS232 interfaces.

When the PICs have been reset they run through an
initialization procedure setting up necessary registers and
handshaking with each other. The handshake between
master and slave is important to mutually ensure that
they both run. The handshake is carried out with the use
of two dedicated input/output pins, Ready In (RDI) and
Ready Out (RDO), on each PIC. When one of the PICs is
ready to commence it asserts RDO and polls RDI forever
or until the other PIC asserts its RDO.

Each WN measures the position of its attached ac-
tuator and use this as a reference value for its motor
controller. Then they send these values on the CAN bus
to the SWN and carry on to the main loop.

The SWN waits until it has received the actuator
positions of the two WNs and then it starts its main
loop. If it does not receive the position from one of the
WNs, the main loop will not start.



Handshake before
start of main loop

Initialization

Synchronize and
validate received
reference values

Compute new
control signal

Synchronize and
validate computed

control signals

Apply control
signal on actuator

Send control
signals to WNs

Compute new
reference values

(a)

signal on actuator

Send actuator
position to SWN

reference values
validate received

Handshake before
start of main loop

Initialization

Apply control

Synchronize and

Compute new
control signal

Synchronize and
validate computed

control signals

(b)

Fig. 2. Flow chart illustrating the main loop of the PIC software.
(a) shows the software in the Steering Wheel Node (SWN) and (b)
the software in the Wheel Nodes (WNs).

The flow chart in figure 2 illustrates the most im-
portant program segments of the main loop after the
initialization.

First, the master and slave handshake to ensure that
they start their main loop timers (the timers ensuring
that the main loop is run through 40 times per second)
simultaneously to run synchronously through the loop.

After this handshake the PICs synchronize and vali-
date the contents of the CAN messages received from the
other network nodes. The reception of a CAN message
is registered and handled by an ISR on each PIC. The
validation process is performed on the master. Only a
certain change in reference value since the previous main
loop iteration is allowed and the reference value must be
within a certain numerical range. If both the master and
slave data are valid but differ, the average value is used
on both PICs.

The SWN then computes new reference values for
the wheels and the steering wheel from an algorithm
conforming to the abovementioned functionality of the
distributed power steering.

The actuators at all three nodes are controlled with
a Proportional-Integral-Derivative (PID) controller con-
sisting of the blocks shown inside the dashed box on
figure 2.

First, the required control signal is computed. Then the
new control signal is synchronized and validated before
it is applied to the actuator. The PID controlled actuators
should be as fast as possible and not have any overshoot
as this would cause the actuators to oscillate.

Finally, the WNs send their measured actuator posi-
tions to the SWN, and the SWN sends the new reference
values to the WNs, and the main loop is run over again.

If a PIC fails to respond in one of the handshake
procedures during the main loop, it will be reset by the
other PIC which will finish the main loop alone. After
the reset PIC has finished its initialization, it will wait
for the other in the first of the handshake procedures.

III. R ESULTS

The software for the distributed power steering was
tested to see if it fulfills the demands of functionality
and robustness mentioned above.

During the prototype development the hardware and
program segments have been tested individually and
gradually incorporated and tested in the main program.
Subsequently the system as a whole has been tested.

The test strategy was to invoke a number of faults one
by one (in accordance with the SPF approach) and thus
cause the system to fail. These faults were.

1) Partial and total breakdown of the CAN lines.
2) Software deadlocks in one of the PICs.
3) Wrong data measured by the ADCs or received on

the CAN line.

The partial breakdown of a CAN line was simulated
by unplugging one of the CAN bus connectors on a node
and confirming that the steering gear still worked. This
is illustrated in figure 3.

0 200 400 600 800 1000 1200 1400
0

200

400

600

800

1000
Test of breakdown on master can line.

Samples

A
ng

le
 [S

am
pl

es
]

Steering Wheel reference
Wheel master bus

0 200 400 600 800 1000 1200 1400
0

200

400

600

800

1000

Samples

A
ng

le
 [S

am
pl

es
]

Steering Wheel reference
Wheel slave bus

Fig. 3. Partly breakdown of the CAN lines. Each of the two figures
show the reference values from the steering wheel node together with
the measured positions from a wheel node on one CAN line. On the
top graph one CAN line is disrupted while on the bottom graph the
other CAN line remains intact.

A total CAN line breakdown was invoked by discon-
necting the SWN from the CAN bus, resulting in the
WN actuators and the steering wheel remained in the
same position even when exposed to external forces.



A software deadlock was simulated by writing a
function containing an infinite loop on one of the PICs
and, in the beginning of the main loop, to read the
status of an input port to which a switch was connected.
Closing this switch would then cause the function to be
called forcing a software deadlock to occur.

The three abovementioned tests gave satisfactory re-
sults and showed that the functionality of the system’s
fault handling works.

The handling of wrong data has been tested by letting
one PIC overwrite the data measured by the ADC or
received on the CAN bus with data outside the valid
range. This proved to have no influence on the behaviour
of the system.

In the same manner, handling of wrong data on both
master and slave PIC was tested. Here, the actuators on
the node in question kept their former valid positions.

Prior to the these fault tests, the overall functionality
of the system was tested. It showed that the wheels
ceased to follow the steering wheel when this was turned
quickly. Therefore, a test to monitor the tracking abilities
of the system was carried out. From the log file of
the CAN packet sniffer, the reference value from the
SWN and the actuator positions of the WNs were plotted
against each other. This plot is shown in figure 4 where
it can be seen that the tracking error is approximately 40
samples. The figure also shows that one of the actuators

0 200 400 600 800 1000 1200
200

400

600

800

1000

1200
Ramp Error

t [samples]

an
gl

e 
[s

am
pl

es
]

Steering Wheel reference
Wheel 1 position
Wheel 2 position

Fig. 4. Tracking error of the system. The two dashed lines show
the measured actuator positions of the wheel nodes and the solid line
shows the reference value sent from the steering wheel node.

has some tracking problems. This is caused by a higher
bearing friction after a replacement of parts of the gear.

IV. D ISCUSSION

In general the distributed power steering system
worked satisfactory, conforming to the defined function-
ality.

However, the speed of the system (i.e. the speed of
the actuators and controllers) is rather low, limited by
the actuators being geared DC motors. The problem is
that it is possible to turn the steering wheel faster than the
wheel actuators can turn. This can also cause the change

in reference value to the wheel actuators to exceed its
maximum allowed value and result in invalid data. A
solution to the problem is to use more powerful DC
motors with a lower gear ratio and thus being able to
make a more aggressive controller.

In connection with testing the software ending in a
deadlock, the placing of the simulated deadlock cannot
be random. If the deadlock is placed in the master in
connection with the SPI communication, the slave will
end in an infinit waiting loop due to the functionallity of
the SPI. This case is not considered since the SPI com-
munication is assumed to be error free, which supports
the way the test is performed.

Through the project, the following topics for further
work have been discovered:

� Fault handling and signaling
� Controllers for the actuators

In the fault handling part of the constructed system
most emphasis has been on the serious errors. This
means that the simple errors, such as one faulty ADC
in an node are not signaled under normal conditions.
Furthermore, the faults are only signaled not handled.

The main area of interest in this project has been
the distributed system.Therefore, only limited work has
been done on motor control and motor modeling. To
compensate for the tracking error, the system should be
designed with the ability to follow a ramp or parabola
signal.

REFERENCES

[1] Microchip Technology Inc.,PIC18FXX8 Data Sheet, U.S.A.,
Microchip Technology Inc., 2002.

[2] Microchip Technology Inc.,PIC18FXX2/FXX8 Programming
Specifications, U.S.A., Microchip Technology Inc., 2001.

[3] Robert Bosch GmbH,CAN Specification Version 2.0, Stuttgart,
Germany: Bosch, 1991.

[4] http://www.howstuffworks.com/steering.htm, 2002.
[5] FDM, Alt om bilen, 2nd ed. Det Bedste fra Reader’s Digest

A/S, København 1974.


	Abstract
	I. INTRODUCTION
	II. METHODS AND MATERIAL
	A. Steering System Functionality
	B. Actuator Control
	C. Fault Handling
	D. Software

	III. RESULTS
	IV. DISCUSSION
	REFERENCES

