
Aalborg University
Institute of Electronic Systems
Department of Control Engineering

Design of a Controller for a
Wind Tunnel

Diffuser

Test section

Stagnation box

Cooler Fan and motor

Flow direction

Temperature
sensor

pitot tubes
Array of

6. Semester � Group 631 � 2002

Department of Control Engineering
Aalborg University, Institute of Electronic Systems

TITLE: Design of a Controller for a Wind Tunnel

PROJECT PERIOD: 4. February � 31. May, 2002

PROJECT GROUP: 631

GROUP MEMBERS:

Michael Skipper Andersen

René Just Nielsen

Michael Pedersen

Jørgen Friis

Johnny Jensen

Niels Nørregård Hansen

SUPERVISOR:

Jan Dimon Bendtsen

RUN: 10

MAIN REPORT: 105

APPENDICIES: 36

ENDED: 31. May 2002

ABSTRACT:

This project deals with the con-

struction of a controller for the wind

tunnel situated at the Institute of

Energy Technology, Aalborg Univer-

sity.

This report documents a theoretical

analysis and modeling of the phy-

sical wind tunnel together with an

experimental modeling of the actu-

ator of the tunnel, consisting of an

AC-motor with a fan mounted on

the shaft and a frequency conver-

ter. Then it deals with the design

of three controllers: a PID, a PID

with an input �lter and a state-

space controller. With the use of a

performance index and the control-

ler features, the best suited control-

ler for the tunnel is chosen. Furt-

her the report documents the de-

sign of a graphical user interface for

Windowsr
 2000 that is the inter-

face between the user and the con-

trol system. The interface is written

in C.

The project has resulted in the con-

trol software PelecanWare toget-

her with a PID controller implemen-

ted in the wind tunnel control sy-

stem.

Due to a very late instrumentation

of the tunnel, it has not been pos-

sible to make a model veri�cation.

Therefore the controller designs are

based on the the unveri�ed models,

for which reason the controllers have

been coarsely adjusted to be usable

in the tunnel system.

Afdeling for Proceskontrol
Aalborg Universitet, Institut for Elektroniske Systemer

TITEL: Design af en regulator til en vindtunnel

PROJEKTPERIODE: 4. februar � 31. maj, 2002

PROJEKTGRUPPE: 631

GRUPPEMEDLEMMER:

Michael Skipper Andersen
René Just Nielsen
Michael Pedersen
Jørgen Friis
Johnny Jensen
Niels Nørregård Hansen

VEJLEDER:

Jan Dimon Bendtsen

OPLAG: 10

SIDER: 105

APPENDIX: 36

AFSLUTTET: 31. maj 2002

SYNOPSIS:

Dette projekt omhandler opbygnin-
gen af en regulator og en styrings-
/overvågningsenhed til vindtunnelen
placeret på Instititut for Energitek-
nik, Aalborg Universitet.
Denne rapport dokumenterer en te-
oretisk analyse og modeldannelse af
den fysiske vindtunnel samt en eks-
perimentelt baseret modeldannelse
af tunnelens aktuator, bestående
af en AC-motor påmonteret en
propel og en frekvensomformer.
Derefter beskrives designet af tre
regulatorer til systemet: en PID,
en PID med input-�lter og en
state-space-regulator. Der er på
baggrund af et performance-index
og regulatorkarakteristika foreta-
get et valg af den bedst egnede
regulator til tunnelen. Yderligere
rummer rapporten designet af en
styrings-/overvågningsapplikation
til Windows r
 2000, programmeret
i C. Denne har til formål at fungere
som gra�sk grænse�ade imellem
brugeren og tunnelen.
Projektet har resulteret i applikatio-
nen PelecanWare samt en PID-
regulator, der er blevet realiseret i
tunnelens kontrolsystem.
Grundet en meget sen instrumente-
ring af tunnelen har det ikke været
muligt at foretage en modelveri�ka-
tion. Derfor har regulatordesignene
været baseret på en ikke-veri�ceret
model, hvorfor de designede regula-
torer er justeret kraftig for at gøre
dem brugbare i tunnelen.

Preface

This report is written by group 631 at the Department of Control Engineering
at Aalborg University in the period from the 4. of February to the 30. of May
2002. The theme for the period is �control technology�. The report documents
the design of a controller for a wind tunnel situated at the Institute of Energy
Technology at Aalborg University.

The reader of the report is assumed to have a knowledge corresponding to that
of the sixth semester control engineering or above.

The references in the text are done by chapter or appendix number and section
number. An example of a reference to chapter 2 section 1 is section 2.1.

A reference to a �gure is done by number of chapter or appendix and the
consecutive number of the �gure. For example, a reference to the second �gure
in appendix B would be (�gure B.2). The same goes for references to equations.
An example of a reference to the fourth equation in chapter 4 is equation 4.4.

A reference to a source is put in angular brackets, e.g. [ogata]. In the bibliog-
raphy a list with explanations to the references is found.

In the text the abbreviation VLT is used for the frequency converter.

Enclosed in the report is a CDROM containing data sheets, schematics, source
code and the like.

IV

Contents

1 Introduction 1

2 Analysis 3

2.1 Model of the Wind Tunnel . 4

2.2 Motor, VLT and Fan . 10

2.3 The Overall Model . 12

2.4 Model from Measurements . 12

2.5 The �nal Model . 17

2.6 Sensors . 20

3 Demand Speci�cation 23

3.1 System Description . 23

3.2 System Function . 24

3.3 System Limitations . 24

3.4 The Future of the System . 25

3.5 User Pro�le . 25

3.6 Demands to the Development Process 25

3.7 Parts to be Delivered to the Customer 26

3.8 Assumptions . 26

3.9 Speci�c Demands . 26

3.10 Internal Interfaces . 27

3.11 External Interfaces . 27

3.12 Accept Test Speci�cation . 28

4 Modulization 32

5 Module 1 - Setpoint Changer 34

5.1 Module Considerations . 34

5.2 Module Design . 35

5.3 Test of Setpoint Changer . 37

VI

CONTENTS VII

5.4 Conclusion . 37

6 Module 2 - Classical Controller 38

6.1 Module Demands . 38

6.2 Module Considerations . 39

6.3 Design of Controller without Filter 40

6.4 Design of Controller with Filter 47

6.5 Simulation of the Classical Controllers 51

6.6 Test of the Classical Controllers 53

6.7 Conclusion . 54

7 Module 3 - State-space Controller 55

7.1 General State-Space Description 55

7.2 State-Space Description of the Wind Tunnel 56

7.3 State-space Description of the Compensator 60

7.4 Choice of Pole Locations . 63

7.5 Simulation of the State-space Controller 65

7.6 Test of the State-space Controller 66

7.7 Conclusion . 66

8 Module 4 - Choice of Controller 69

8.1 Comparing the Simulated Features 69

8.2 Comparison Using a Cost Function 70

8.3 Choice of Controller . 72

9 Module 5 - Hardware Con�guration 73

9.1 The Pressure Transducers . 73

9.2 The Temperature Sensor . 75

9.3 The VLT . 75

9.4 The PC . 76

10 Module 6 - Software 77

10.1 Protocol . 78

10.2 GUI Design . 79

VIII CONTENTS

10.3 Controller Process Design . 83

10.4 Software Test . 88

10.5 Conclusion . 91

11 Accept Test 92

11.1 Demands for the Control Algorithm 92

12 Conclusion 96

12.1 Improvements . 97

Bibliography 99

Appendix 100

A Simulations 100

A.1 Simulation of Classical Controllers 100

A.2 Simulation of the State-space Compensator 106

B Win32 API 112

B.1 Common Graphical Elements in a Windowsr
 Program 112

B.2 The Windowsr
 Message Queue 113

B.3 Windows r
 Resource Files . 115

B.4 Pipes . 116

C Tunnel Measurements 117

D Butterworth Filter 120

E VLT Setup 121

F Controller test 122

F.1 PID Controller . 123

F.2 PID Controller with Filter . 124

F.3 State-Space . 126

G Component List 127

CONTENTS IX

H I/O Card Connector 128

I Schematic 129

J Board Layout 132

K CDROM contents 135

Chapter 1

Introduction

In projects concerning the aerodynamics of a construction, such as tall build-
ings, bridges and aircrafts e.g., it is often necessary to build small-scale mock-
ups of the construction in order to predict the aerodynamic behaviour of the
full-scale construction.

Attempts to set up a complete mathematical model of the system, or just parts
of it, often led to inappropriately complicated models that are too complex to
be of any use. In the case of the construction of a building, for instance, often
it is only desirable to know the bottom line outcome of the in�uence of air
velocity on the building, and not the actions of each molecule in the entire
system.

In the former case a wind tunnel is a suitable mean for testing aerodynamical
behaviours on a small-scale mock-up of the building. With the use of a tech-
nique called Laser Doppler Anemometry (LDA) e.g. the air velocity around
the mock-up can be registred and analyzed.

The Department of Thermal Energy Technology at the Institute of Energy
Technology, Aalborg University has had several di�erent wind tunnels used
for research.

The �rst prototype had a small test section and was a single-pass, open ended
wind tunnel which was very sensitive to its surroundings. This had the disad-
vantage that even small �uctuations in the air pressure outside the wind tunnel,
such as a door being opened or closed, would re�ect on the measurements and,
hence, the prototype was not suitable for research.

Later a student project was established with the purpose of building a closed-
loop wind tunnel. It was still small and the air velocity in the test section was
not quite stable.

Then, with the experience from the previous wind tunnels and wind tunnels
from other test facilities in the world, a new and larger wind tunnel was built
with funds from private companies and Aalborg University. With a longer test
section and with the introduction of a stagnation box, in which the air velocity
can be brought down to zero and reaccelerated, the �ow stability in the test
section has improved and better results can be obtained.

1

2 Chapter 1: Introduction

Flow measurements in the new tunnel are carried out using LDA. By adding
coloured dust to the air in the tunnel and projecting a plane of coherent light
from a laser through the test section, the light re�ections from the dust particles
can be registered with a camera and analyzed. Since this type of measurement
requires a constant air temperature, a regulated cooler has been installed in
the wind tunnel to compensate for the motor's heating of the air.

The air velocity in the wind tunnel is adjusted by manually entering a frequency
on the motor's frequency converter and subsequently measuring the air velocity
in the test section with a hand held gauge. This, however, means that the
velocity in the test section cannot be properly regulated and therefore this
student project at the Department of Control Engineering has been established
in order to design and implement a controller for the wind tunnel.

At the present moment the wind tunnel is in the process of being equipped with
�xed pressure transducers and a temperature transducer. Until these have been
properly installed, air velocity and air temperature must be measured with
hand-held gauges, which complicates the measuring procedure somewhat.

Chapter 2

Analysis

To be able to design a controller for the wind tunnel a suitable model of
this must be set up. This is done in the analysis part where also the various
transducers and actuators used in the wind tunnel are analyzed.

A draft of the wind tunnel is shown in �gure 2.1.

Diffuser

Test section

Stagnation box

Cooler Fan and motor

Flow direction

Temperature
sensor

pitot tubes
Array of

Figure 2.1: A sketch of the wind tunnel.

It consists of the following components:

Fan and Motor: The fan and motor create a pressure di�erence which causes
the air in the tunnel to �ow. These two components will be considered
in section 2.2.

Di�user: The purpose of the di�user is to reduce the velocity of the air from
the fan and motor into the stagnation box.

Cooler: To keep the air temperature in the wind tunnel at a constant value a
cooler is inserted to compensate for the heating of the air caused by the
motor.

3

4 Chapter 2: Analysis

Stagnation Box: The stagnation box acts like a bu�er and a capacitor that
equalizes �uctuations in the air velocity. The air velocity is assumed to
be zero in the center of the box, hence the name stagnation box.

Test Section: The test section is a 4 meter duct in which the object to be
tested is placed. By means of Laser Doppler Anemometry the air velocity
in the test section can be measured.

Pressure Transducers: At the end of the test section an array of 3�3 pitot
tubes, connected to six pressure transducers, is mounted. These will be
further described in section 2.6.

Temperatur Sensor: The temperature sensor is used only to produce read-
outs of the current temperature in the test section to the user.

2.1 Model of the Wind Tunnel

An air velocity occurs only when a di�erence in air pressure between two points
exists. The air velocity in the wind tunnel is determined by the angular velocity
of the fan, mounted on the motor shaft. Increasing the angular velocity causes
the air pressure in front of the fan to rise and, hence, causes the air to �ow.

In order to model the air velocity in the wind tunnel the pressure losses in
the wind tunnel must be calculated. Table 2.1 shows the symbols used in the
following calculations.

The elements in the wind tunnel which mainly cause air pressure losses are the
di�user, the air cooler, the stagnation box, the test section and the two 90Æ

bends after the test section.

In �gure 2.2 these elements are considered in an equivalent diagram of the wind
tunnel, where the resistances illustrate the pressure loss factors of the di�erent
components of the wind tunnel, and the point a is where the �ow rate is
measured. From this equivalent diagram the volumen �ow can be calculated.

A BCs�p(t)

Rd Rc Rsin
RtRsout

Qi(t)

Rb4

Rb3a

Qo(t)

Figure 2.2: Equivalent diagram of the wind tunnel.

2.1 Model of the Wind Tunnel 5

In general the pressure loss �p(t) of a speci�c tunnel element depends on the
square of the air velocity v(t) and is given as:

�p(t) = �
�

2
v(t)2 = �

�

2

�
Q(t)

A

�2

= R �Q(t)2 (2.1)

where � is the pressure loss factor, � is the density of air, A is the area of the
tunnel element and Q(t) is the volume �ow.

Symbol Unit Explanation
�p(t) [Pa] Pressure increase delivered by the fan and the motor.
� [kg/m3] Density of the air.
� [�] Pressure loss factor.
Q(t) [m3/s] Volume �ow.
A [m2] Area.
Cs [mol�m3/J] Capacitance of the stagnation box.
Rair [J/mol/K] Gas constant.
�t [�] Friction factor related to pressure loss in a duct.
DHt

[m] Hydraulic diameter of a duct.
k [m] Roughness of duct material.

Table 2.1: Symbols used in the wind tunnel model.

Using Kirchho�'s Voltage Law on �gure 2.2 gives the following:

Pressure loss in loop A:

�p(t) = �pd(t) + �pc(t) + �psin(t) + �pCs(t) (2.2)

Pressure loss in loop B:

�pCs(t) = �psout(t) + �pt(t) + �pb3(t) + �pb4(t) (2.3)

The Di�user

A di�user is a duct with the shape shown on �gure 2.3.

flow direction

A1 A2

v1(t) v2(t)

Figure 2.3: A draft of a di�user.

Since the volume �ow into the di�user (Q1(t)) is equal to the volume �ow out
of the di�user (Q2(t)), it follows that:

Q1(t) = Q2(t) , A1 � v1(t) = A2 � v2(t) (2.4)

6 Chapter 2: Analysis

and therefore the e�ect of a di�user is to reduce the air velocity.

Since the di�user is divided into tree parts, it is considered to be made of three
parallel di�users with the same geometry. Hereby the volumen �ow through
each of the di�users will be the same. The pressure loss over one of the di�users
is [pukkila, p 24]:

�pone di�(t) = �d
�

2

�
1

3
v(t)

�2

= �d
�

2

�
1

3
�
Qi(t)

Ad

�2

(2.5)

where v(t) is the air velocity and Qi(t) is the volume �ow into the di�user.

The loss factor �d depends on the ratio between the maximum and minimum
area, and Ad is the smallest area of the di�user, i.e. where the air velocity is
highest.

The Cooler

The pressure loss over the cooler is also a function of the square of the velocity:

�pc(t) = �c
�

2

�
Qi(t)

Ac

�2

(2.6)

where �c is a loss coe�cient for the speci�c cooler.

The Stagnation Box

The stagnation box is considered to consist of a capacitance and an input
resistance and an output resistance [ogata]. The pressure losses over the input
and output resistances are:

�psin(t) = �sin
�

2

�
Qi(t)

Asin

�2

(2.7)

�psout(t) = �sout
�

2

�
Qo(t)

Asout

�2

(2.8)

The pressure loss over the capacitance is:

�pCs(t) =
1

Cs

Z t

�1

Qi(�)�Qo(�)d� (2.9)

The capacitance Cs is given as [ogata, p 193]:

Cs =
VCs

 �Rair � T
(2.10)

where VCs is the volume of the stagnation box andRair is 287 J=K �mol.
 is the
ratio between the speci�c heats cv

cp
, where cv is the speci�c heat at constant

volume and cp is the speci�c heat at constant pressure. The value of
 is
typically between 1 and 1.2, and can therefore be considered approximately
constant.

2.1 Model of the Wind Tunnel 7

The Test Section

Due to the length of the test section the pressure loss can be calculated as the
pressure loss of a fully developed turbulent �ow in a duct [pukkila, p 22]:

�pt(t) =
lt�t
DHt

�
�

2

�
Qo(t)

At

�2

(2.11)

where:

�t =
1�

1:14� 2 � log k
DHt

�2 (2.12)

k is the roughness of the duct material and DHt
is the hydraulic diameter of

the test section given by:

DHt
=

2ab

a+ b
(2.13)

where a and b are the length and width of a cross section of the duct, respec-
tively.

The two 90Æ Bends

The pressure loss of a 90Æ bend is given by:

�p90Æ(t) = �90Æ
�

2

�
Qo(t)

A90Æ

�2

(2.14)

Thus, the total loss of the two bends is:

�pb(t) = �90Æ
�

2

 �
Qo(t)

Ab3

�2

+

�
Qo(t)

Ab4

�2
!

(2.15)

Solving the Equations

Now, equation 2.2 can be further expanded:

�p(t) = 3 � �d
�

2

�
1

3
�
Qi(t)

Ad

�2

+ �c
�

2

�
Qi(t)

Ac

�2

+ �sin
�

2

�
Qi(t)

Asin

�2

+
1

Cs

Z t

�1

Qi(�)� Qo(�)d�

= K1 �Qi(t)
2 +

1

Cs

Z t

�1

Qi(�)�Qo(�)d�

(2.16)

where K1 is:

K1 =

�
�d
3A2

d

+
�c
A2
c

+
�sin
A2
sin

�
�
�

2
= Rd + Rc + Rsin (2.17)

8 Chapter 2: Analysis

Since Qi(t)
2 is a nonlinear term, a linearization is required in order to be able to

perform a Laplace transform of the di�erential equations and set up a transfer
function.

Qi(t)2 can be linearized using a �rst-order Taylor-series expansion about an
operating point (t; Q(t)), or more shortly (t; Q). The �rst-order expansion is:

Q2 ' Q
2
+
d(Q2)

dQ

����
Q=Q

(Q�Q) = Q
2
+ 2Q � bQ (2.18)

Inserting 2.18 in 2.16 yields:

�p(t) = K1

�
Q
2

i + 2Qi
bQi(t)

�
+

1

Cs

Z t

�1

bQi(�)� bQo(�)d� (2.19)

By di�erentiating both sides, equation 2.19 can be written as:

d�p(t)

dt
= 2K1Qi

d bQi(t)

dt
+

1

Cs

bQi(t)�
1

Cs

bQo(t) (2.20)

Using the Laplace transform on equation 2.20 gives:

s�p(s) =

�
2K1Qis+

1

Cs

� bQi(s)�
1

Cs

bQo(s) (2.21)

Hereby the equation that describes loop A in the equivalent diagram of �g-
ure 2.2 is obtained. In order to obtain a similar equation for loop B, equation 2.3
is expanded:

1

Cs

Z t

�1

Qi(�)�Qo(�)d� = �sout
�

2

�
Qo(t)

Asout

�2

+
lt�t
DHt

�
�

2

�
Qo(t)

At

�2

+ �90Æ
�

2

 �
Qo(t)

Ab3

�2

+

�
Qo(t)

Ab4

�2
!

= K2 �Qo(t)
2

(2.22)

where K2 is:

K2 =

�
�sout
A2
sout

+
lt�t

DHt
A2
t

+
�90Æ

A2
b3 + A2

b4

�
�
�

2
= Rsout + Rt + Rb3 + Rb4 (2.23)

Inserting equation 2.18 in equation 2.22 in gives:

1

Cs

Z t

�1

bQi(�)� bQo(�)d� = K2

�
Q
2

o + 2Qo
bQo(t)

�
(2.24)

2.1 Model of the Wind Tunnel 9

and di�erentiating both sides, the equation can be written as:

1

Cs

bQi(t)�
1

Cs

bQo(t) = 2K2Qo

d bQo(t)

dt
(2.25)

Making the Laplace transform of equation 2.25 and isolating bQi(s) gives:bQi(s) = 2K2CsQos bQo(s) + bQo(s) (2.26)

By combining equation 2.21 and 2.26 the transfer funtion from �p(s) to bQo(s)
can be obtained:bQo(s)

�p(s)
=

1

2
�

1

2K1K2CsQiQo � s+K1Qi +K2Qo

(2.27)

2.1.1 Inserting Values in the Transfer Function

By means of the tunnel blueprints and the preceding formulas, the equivalent
resistances of the di�erent tunnel components have been computed and the
results are listed in table 2.2.

Equivalent Resistance Value [N � s2=m6]
Rd 0.99
Rc 0.24
Rsin 0.24
Rsout 0.12
Rt 0.19
Rb 27.28

Table 2.2: Equivalent resistances of the tunnel model.

Under the assumption that the temperature T is constant 293 K,
 is 1.1
and Rair is 287

J
K�mol

, the capacitance of the stagnation box Cs is found to be

1:84 � 10�4 mol�m3

J
.

The operating point of Qo has been chosen to be 15 m
s
. To calculate the value

of Qo the velocity v(t) must be multiplied by the area of the test section since:

v(t) =
Q(t)

A
(2.28)

The area A of the test section is 0.186 m2 which yields that Qo = 2:80m
3

s
.

In steady state the volume �ow is the same all through the tunnel and thus
Qi has been chosen to be the same as Qo.

10 Chapter 2: Analysis

Writing the transfer function in standard form and inserting the values gives:

Qo(s)

�p(s)
=

G

�s+ 1
=

0:0061

0:0014s+ 1
=

4:36

s+ 714:3
(2.29)

which correctly implies that the gain G is less than one.

2.2 Motor, VLT and Fan

In general the system that produces the pressure di�erence �p(t) in the wind
tunnel consists of the elements in �gure 2.4.

MotorVLT Fan
!VLT(t)u(t) !motor(t) �p(t)

Figure 2.4: A representation of the system from input voltage u(t) to increase
in air pressure �p(t).

The VLT is a control device for an induction motor. It basicly consists of an
inverter, which is a power electronical device, and some control and protection
circuitry. The inverter is capable of producing a 3-phase AC-voltage that vary
in both angular frequency and amplitude, from a DC-voltage. This means that
the VLT �rst recti�es the AC line voltage, and then produces the desired 3-
phase AC voltage for the motor. The conversion ratio can be controlled either
locally on the VLT or through various remote channels. One example is to use
an analogue control voltage input u(t) to specify the output angular frequency,
which is used in the project [cdrom, Data sheet].

The purpose of using a VLT as an input source to the motor is to aid an
easier use of the motor. This is for instance done through the use of current
control, which means that the angular frequency is not applied or removed
instantaneously, but gradually (controlled by the current drawn or induced
by the motor), to minimize power loss and wear [cdrom, Data sheet]. This
leads to the assumption that the dynamics of the motor is overshadowed by
the dynamics dictated by the VLT. This means that setting up a complete
dynamic model of the motor itself is inappropriate.

Further, since the fan is mounted on the motor shaft, and the motor and
fan are assembled and placed in the tunnel, it is not possible to make any
measurements on the motor itself. Consequently the model of the VLT, motor
and fan is derived on the basis of measurements rather than �rst principles.

To arrive at the block diagram representation of the system in �gure 2.5, the
�rst thing that is noted is that the conversion from the control voltage u(t) to

2.2 Motor, VLT and Fan 11

the angular frequency !motor(t) is linear (here the signal amplitude is discarded)
[cdrom, Data sheet]. The conversion constant KVLT is found from knowledge
of the maximum input control voltage umax and the maximum output angular
frequency !VLT,max, and the fact that the angular frequency is proportional
with the control voltage. This gives the following:

KVLT =
!VLT,max

umax

(2.30)

For the motor it is known that the angular frequency !motor(t) of the shaft has
a linear dependence of the input frequency !VLT(t) in steady state (kilde: Per
Sandholt). It is assumed that this can be generalized, when using a VLT. The
proportionality constant Kmotor is found to be:

Kmotor =
!motor,max

!VLT,max

(2.31)

As stated above, the dynamics of the motor and VLT is assumed to be dom-
inated by the VLT dynamics. It is known that the combination of a motor
and VLT can be modeled as at least a second order system (Kilde: Jakob
Stoustrup). To arrive at a simple model the second order approximation is
used.

!(s)

u(s)
=

K

s2 + 2�!ns + !2
n

(2.32)

In this formula the constant K is the product of the constants KVLT and
Kmotor.

The last element of the model is the fan. Since it has not been possible to �nd
any speci�c data on the fan, it is assumed that the fan is not equally e�cient
at all !motor(t). This implies that the fan has a characteristic dependent of
!motor(t) in both a direct and an indirect way, like in equation 2.33.

�p(t) = Kfan � !motor(t) � f(!motor(t)) (2.33)

Here Kfan is a conversion constant from !motor(t) to �p(t) and f(!motor(t)) is
an unknown function of !motor(t). The expression in equation 2.33 is nonlinear
and since none of the terms in equation 2.33 are known, the fan is modelled
as a general nonlinear function.

From this it is now possible to write down the following block diagram:

The result is a model outline that has to be veri�ed. Further, some of the
terms in the model need to be calculated to complete the model. This is done
through model estimation based on measurements.

2.2.1 Calculating Values in the Model

From the previous section, two values can be calculated: the constants in equa-
tion 2.30 and 2.31. From the available data on the VLT and motor where it is

12 Chapter 2: Analysis

!(s)u(s)
Tunnel

�p(s)
K

s2+2�!ns+!2n

Figure 2.5: A block diagram representation of the model outline for the motor,
VLT and fan.

given that !VLT,max = 2� � 50 and umax = 10, the following can be calculated:

KVLT =
50 � 2�

10
= 31:42 rad

s�V

!motor,max = 2935 rpm � 307:35 rad
s
)

Kmotor =
307:35

50 � 2�
= 0:98

(2.34)

From this the constant K can be found to be:

K = KVLT �Kmotor = 30:74 rad
s�V

(2.35)

This can then be inserted in the transfer function in equation 2.32.

2.3 The Overall Model

Combining the anticipated transfer function of the fan and motor with the
derived linearized transfer function of the wind tunnel gives an overall transfer
function from VLT input to volume �ow in the test section, illustrated on
�gure 2.6.

�p(s)!(s)u(s) Qo(s)4:36

s+714:3

30:74

s2+2�!ns+!2
n

Figure 2.6: A block diagram representation of the overall model.

Where the transfer function from the VLT input to the pressure increase over
the fan and motor is composed of two terms: the transfer function of the VLT
and motor and the expression of the pressure increase due to the fan's angular
velocity. The latter is a nonlinear function of ! and therefore not a real transfer
function but for illustrative purposes it has been included all the same and will
be dealt with later.

2.4 Model from Measurements

To obtain the actual model of the system, measurements of the real system
have been taken. When the tests was made the pressure sensors where not

2.4 Model from Measurements 13

installed on the wind tunnel, so these measurements where made with a hand
held instrument to measure the air velocity. More information about the mea-
surement are given in appendix C.

The outcome of these measurements are loaded into MatlabTM where the
signals are �ltered and the transfer function is estimated using the toolbox
Senstools.

With these measurements the transfer functions from the VLT input voltage
to the air velocity in the test section can be estimated. This is considered to
be the whole system. Two step-up and one step-down measurements have been
made to investigate possible di�erences. A computer with an I/O-card is used
for the measurements.

The software used to carry out these measurements consists of two parts. One
part for handling the output signal and one part to acquire the measured
signal. The output signal from the I/O-card is a voltage step generator with
10 steps of one volt each. Every step lasts for 10 seconds. A MatlabTM plot
of the step generator for a step-up is shown in �gure 2.7.

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

9

10

Time [sec]

V
ol

ta
ge

Step generator

Figure 2.7: The signal from the step generator from the I/O-card.

The signal measurement handling in the software stores the measured signal
in an ASCII-�le, as also the input step is stored in an ASCII-�le.

2.4.1 Results from the Step-up

The results from the step-up measurements are loaded intoMatlabTM. A plot
of one of the step-up measurements is shown in �gure 2.8.

14 Chapter 2: Analysis

0 20 40 60 80 100 120
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time [sec]

O
ut

pu
t v

ol
ta

ge
 fr

om
 m

ea
su

re
m

en
t d

ev
ic

e

Measurement of the dynamics in the wind tunnel

Figure 2.8: Plot of one of the step-up measurements.

This signal has to be �ltered for Senstools to make a good �t. The �lter
used for these measurements is a second-order Butterworth lowpass �lter (see
appendix D).

Senstools is invoked with the following input arguments: The input step vec-
tor, the �ltered output vector and a time vector. Then Senstools estimates
the parametres of the transfer function. The �ltered signal and the Senstools
�t are shown in �gure 2.9.

0 1000 2000 3000 4000 5000 6000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Filtered signal and estimated signal

y(
k)

 a
nd

 y
m

(k
)

Sampling number

errn = 1.58 %

Figure 2.9: The �ltered and estimated signal from a step-up measurement.
The estimation error is written on the �gure.

2.4 Model from Measurements 15

The estimation error is shown on the �gure and it reads 1.58%. This error is
quite acceptable, since the �ltered signal contains some noise variations that
Senstools is not supposed to make a �t to. Further, a certain degree of
nonlinearity can be observed in the measurement, but Senstools can not
estimate this nonlinearity and it is assumed to be so small that the system can
be considered linear.

The parameters from the two step-up �ts are averaged and the transfer function
for a step-up is:

0:623

s2 + 6:44s+ 19:8
(2.36)

This test was made with an o�set in the VLT. In the calculations this o�set
was removed, because the �lter and Senstools must have a signal starting in
0. The o�set resulted in the output frequency of the VLT being 5 Hz when the
input signal was 0 V and 50 Hz when the input signal was 10 V. 5 Hz is 10 %
of 50 Hz, and it a�ects only the gain of the transfer function with a factor 1.1,
so the �nal transfer function for the step-up becomes:

0:685

s2 + 6:44s+ 19:8
(2.37)

Also a measurement with a large input step (from zero to maximum) was made
to see if this transfer function also is usable for large steps on the motor. This
measurement was made without the o�set to look at the dynamics when the
motor starts from zero. This step is plotted together with the step response to
equation 2.37 multiplied by ten, and shown in �gure 2.10.

The �gure shows that the dynamics are slower when the steps become larger.
It also shows that there is a short delay, or high order dynamics of the system,
when the motor starts from zero. This is illustrated in �gure 2.11 where two
steps of one volt each are shown. The slowest response is from zero to one volt
and the fastest is from four to �ve volt.

This delay or higher order dynamics must be accounted for in the control
system.

2.4.2 Results from the Step-down

The step-down measurements have been made in exactly the same way as
the step up measurements. One test was considered to be enough, since the
two measurements from step-up where much alike. The same equipment and
butterworth-�lter where used. The �ltered and the estimated signal are shown
in �gure 2.12.

16 Chapter 2: Analysis

Step Response

Time (sec)

A
m

pl
itu

de

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Large step

Small step

Figure 2.10: The step response from the measurements with small steps to-
gether with the step response from a large step.

0 2 4 6 8 10 12 14 16 18 20
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
Step from 0 V to 1 V and step from 4 V to 5 V

Step from 0 V to 1 V

Step from 4 V to 5 V

Time (sec)

A
m

pl
itu

de

Figure 2.11: Two steps of one volt each. The slowest of them is a step from
0 V to 1 V and the other is from 4 V to 5 V.

2.5 The final Model 17

20 40 60 80 100 120 140
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time [sec]

y(
k)

 a
nd

 y
m

(k
)

Filtered signal and estimated signal

errn = 1.71 %

Figure 2.12: The �ltered and estimated signal from the step-down measure-
ment.

During this measurement the same o�set as in the step-up measurement was
set in the VLT. It means that the transfer function for the step down also is
multiplied with 1.1. The �nal transfer function for the step-down measurement
is shown in equation 2.38.

0:657

s2 + 9:31s+ 18:5
(2.38)

It is assumed that the step response is slower when the input step becomes
larger in the step-down, as it was in the step-up. To compare the step-up and
the step-down transfer functions, the step responses are plotted in �gure 2.13.

Both systems are approximated to second-order systems, and it can be seen
that the damping ratio is larger for the step-down model than for the step-up
model. This, in turn, means that the dynamics of the step-up transfer function
are faster than those of the step-down transfer function.

2.5 The �nal Model

The overall model �tted to the measurements is a second-order system, whereas
the derived model yields a third-order system.

However, since the dynamics of the wind tunnel is assumed to be much faster
than that of the VLT and motor (the time constant �tunnel = 6 ms whereas
the rise time of the whole model tr;whole model ' 400 ms), the dynamics of the
whole model are dominated by the VLT and motor model and therefore the
tunnel model can be disregarded. This statement is further supported by the

18 Chapter 2: Analysis

Step Response

Time (sec)

A
m

pl
itu

de

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Step Up

Step Down

Figure 2.13: Step response for the step-up and step-down transfer functions.

following considerations.

The rise time tr of a second-order system is given by:

tr '
1:8

!n
(2.39)

and the maximum rise time (the transition time from 10% to 90% of the �nal
value) dictated by the VLT is 0.8 s (see �gure 2.14). According to equation

0.5 1

25

50

t [s]

t
r

f [Hz]

90%

Figure 2.14: The rise time tr dictated by the VLT.

2.39 the maximum natural frequency !n;max is therefore 2.25 rad
s
, limited by

the VLT.

The poles of a standard second-order system, inserting the value of !n;max, are
given by:

K

s2 + 2�!ns+ !2
n

=
K

s2 + 4:5�s+ 5:0625
=

K

(s+ p1)(s+ p2)
(2.40)

where:
p1; p2 = �2:25� � 2:25

p
�2 � 1 (2.41)

2.5 The final Model 19

For an underdamped systems the damping ratio � is real number between 0
and 1, so the poles vary between p1 = p2 = �2:25 and p1; p2 = �2:25j as
shown in �gure 2.15.

Re

Im

p1 = p2 = �2:25

p1 = 2:25j

p1 = �2:25j

Figure 2.15: Poles of the second-order system when � vary between 0 and 1.

Using equation 2.41 and the fact that in systems where two poles are separated
by more than a factor 10 in magnitude, the slowest becomes dominant and the
faster can be discarded [haugen, p 193], the following is stated.

� � 5 As the damping ratio exeeds 1, the two poles move along the real
axis, one moving increasingly faster towards �1 and the other grad-
ualy slower towards the origin. In this situation the two poles of the
motor and VLT are closer than a factor 10 together and the pole of the
wind tunnel is about 30 times faster. This means that the pole of the
wind tunnel is discarded and this gives a total system of second order.

� > 5 All the poles are separated individually by more than a factor 10 making
the slowest pole dominant. Therefore both the pole of the wind tunnel
and the faster of the two other poles can be omitted. This gives a �rst
order system.

Looking at the measured step response, it can be seen that they have the
following characteristics: Both responses have a horisontal tangent in 0 and the
step-up reponse has a slight overshoot. This implies that the transfer function
is a second order system corresponding to � < 5. This means that the pole of
the wind tunnel, placed in s=714.3 rad

s
can be descarded.

The proposed nonlinear element of the derived model is assumed to have in�u-
ence on the gain of the response. The average gain in each step of the �ltered
curve in �gure 2.9 is plotted against a straight line in �gure 2.16.

20 Chapter 2: Analysis

1 2 3 4 5 6 7 8 9 10 11
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Step

O
ut

pu
t v

ol
ta

ge
 fr

om
 m

ea
su

re
m

en
t d

ev
ic

e

The nonlinearity in the system and the linear regression

Figure 2.16: The average of each step in the step up caracteristic plotted a
straight line.

From the �gure it can be seen that the nonlinearety is insigni�cant and, thus,
can be considered a constant Kfan.

2.6 Sensors

The wind tunnel is equipped with pressure transducers at the end of the test
section to provide the controller with the appropriate feedback. Futher a tem-
perature sensor is installed to inform the user about the temperature in the
wind tunnel.

2.6.1 Pressure Transducers

The pressure transducers measure the dynamic pressure caused by the air
velocity at the end of the test section and the air velocity is found from calcu-
lations based on the pressure.

The pressure transducer are di�erential analogue pressure transducers of type
1151 and 1351 from the Rosemount Alphaline Pressure Transducers Family.
The analogue output range from 4 to 20 mA DC and is linear with the process
pressure [cdrom, Data sheet].

The transducers are placed on the outside of the wind tunnel and the pressure
is measured through a grid of pitot tube at the end of the test section.

The pitot principle is shown on �gure 2.17 where the total pressure (pt) is the
sum of the static (ps) and the dynamic (pd) pressure.

2.6 Sensors 21

Air stream
Static pressure point

ps
pd

pt

Figure 2.17: Figure of the pitot tube principle [ståbi, p 428].

ps is the ambient pressure and pd is the pressure caused by the air velosity.

The pressure transducers measure the di�erence between the total and static
pressure and have the dynamic pressure as an output. The dynamic pressure
is used in equation 2.42 to �nd the air velocity [ståbi, p 428].

pd =
�air
2
v2 , v =

r
2 � pd
�air

(2.42)

The pressure transducers use the principle sketched on �gure 2.17 to �nd the
dynamic pressure as the di�erence between the total and the static pressure.

How the pressure transducers works is illustrated on �gure 2.18 where a draft
of the cross section of the Rosemount Æ-CellTM sensor is shown.

A pitot tube is connected to either side of the Æ-CellTM, transferring the static
and the total pressure respectively into an oil �lled chamber containing a sens-
ing diaphragm. When a voltage di�erence is applied between the walls of the
chamber and the sensing diaphragm, an electric capacitance will exist between
these.

A di�erence in the static and the total air pressure will cause the sensing
diaphragm to move towards the connection with the lowest air pressure. The
capacitance will change proportionally with the displacement of the sensing
diaphragm.

The capacitance is converted to an electric current, which is a linear function
of the dynamic air pressure, and with this function, the magnitude of the air
velocity can be obtained with the use of equation 2.42.

22 Chapter 2: Analysis

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���

���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

Sensing Diaphragm

Capacitor Plates

Low Side

Oil Fill

Rigid Insulation

Lead Wires

Isolating Diaphragm

High Side

Figure 2.18: Cross section of a Rosemount Æ-CellTM [cdrom, Data sheet].

2.6.2 Temperature Sensor

The temperature sensor is a PT100 sensor, which is an international standard
of positive temperature coe�cient (PTC) platinum resistance thermometer
sensors. It is a class A sensor with a tolerence of � 0.1% and the output is
approximately linear from 0Æ C to 100Æ C.

A PT100 sensor uses the principle that the resistance of platinum depends on
the temperature. The measuring method is to send a constant current through
the platinum wire and measure the voltage over it. By Ohm's law the resistance
is found and by using the temperature characteristics of the platinum wire the
temperature can be determined.

Chapter 3

Demand Specification

In this chapter the system is described, and the extends of the project will
be delimited to the system this project is about. The internal and external
interfaces are described in order to make a modulization.

3.1 System Description

The system contains the following major elements:

� PC.

� VLT (Motor interface).

� Motor.

� I/O card.

� Temperature sensor.

� Pressure transducers.

The interactions between the elements of the system are shown in �gure 3.1.

PC: The PC is the main controller of the system. It carries out the following
tasks:

� Implements the system's control algorithms.

� Controls the motor through the VLT.

� Draws a graphical user interface (GUI).

� Reads inputs from transducers connected to the I/O card.

VLT: The VLT is the motor driver controlled by the PC.

Motor: The motor is equipped with a fan which produces the circulation of
air inside the tunnel. The angular velocity and thereby the air pressure
is controlled by the VLT.

23

24 Chapter 3: Demand Specification

Motor

pressurePressure

Transducers

VLT

PC with
I/O card

A part of the wind tunnel

PressureTemp

Figure 3.1: The construction of the main system. Only the parts dealt with in
this project is included in this �gure.

I/O card: The I/O card is the interface between the PC and the transducers
and between the PC and the VLT.

Temperature sensor: The temperature sensor measures the temperature in
the wind tunnel and convert it to an electrical signal to be acquired by
the PC via the I/O card.

Pressure transducers: The pressure transducers measure the air pressure
and convert it to electrical signals that can be captured by the I/O card.

3.2 System Function

The system should control the air velocity inside the wind tunnel. When the
user provides the control system with a set of desired values of air velocity,
the system must bring the tunnel in the desired state. The system should then
inform the user when the desired setpoint values have been reached.

The user should have the opportunity to make the air velocity increase/decrease
in a ramp function. It should be possible to provide the system with data about
the inclination of the ramp.

All the measured data must be stored in a log �le.

3.3 System Limitations

Control of the cooler connected to the wind tunnel will not be considered in
this project.

3.4 The Future of the System 25

The control system is only designed to operate correctly when the test object
is small. If the test objects are too large the air velocity in the testing area
will increase and the air velocity measurements will not match the actual air
velocity in the test section. If large objects are tested the user must convert
the measurements to an equivalent air velocity in the testing area.

It is presumed that there will not be made any changes on the wind tunnel,
since this will a�ect the model of the system, and thereby the behaviour of the
controller.

3.4 The Future of the System

The system will be implemented on a PC connected to the wind tunnel already
built. The system will be the �nal product and will be in use for further use
of the wind tunnel.

The provided software is open source, with no warranty and can be freely used,
altered and distributed.

3.5 User Pro�le

The user is expected to be a member of the sta� or technical personnel from
the Institute of Energy Technology at Aalborg University. It is assumed that
the user has a certain knowledge about �uid mechanics. The user does not
need to know anything about control engineering.

The user will have to know how the wind tunnel operates and know about
the air velocity inside the wind tunnel. Otherwise no special quali�cations are
required.

3.6 Demands to the Development Process

The control software and the Graphical User Interface (GUI) will be imple-
mented on a PC with Windowsr
 2000 software using C. The modeling and
simulations of the system and its components will be made in MatlabTM.

The communication between a PC and the VLT is carried out using an analo-
gus output on the I/O card.

The �nal product, including the documentation, must be handed in on the 31.
May 2002.

26 Chapter 3: Demand Specification

3.7 Parts to be Delivered to the Customer

Below is listed the parts to be delivered to the customer:

� System documentation (this report).

� A CDROM containing the application software.

� A user manual in English.

3.8 Assumptions

The following items are assumed to be available trough the developing process:

� PC with Windowsr
 2000 as the operating system and all necessary
software.

� VLT - Danfoss VLT 6000 HVAC.

� Motor - Leroy-sommers model LS160MP with a Novenco model ACN
630 air fan.

� I/O card - NuDAQ model PCI 9112, 12 bit + device drivers and libraries
for C.

� Pressure transducers - Rosemount model 1351 (6 units).

� Temperature sensor, type PT100.

� Wind tunnel.

� Consultans from the Institute of Energy Technology.

3.9 Speci�c Demands

The areas of dynamic for air velocity goes from 0 m
s
to 30 m

s
. The accuracy of

the controller must be � 1%.

PC: The PC must be able to communicate with the I/O card via a PCI slot.
It must be able to maintain the GUI, and therefore contain the software
needed to draw the GUI.

The log �le should contain the data in an ASCII .csv �le. It contains the
measurement data obtained at any speci�c time. The measurement data
will be mean values of the air velocity and temperature at the end of the
test section.

3.10 Internal Interfaces 27

Controller: The controller must ensure that the overshoot of the air velocity
in the wind tunnel must be within �1% and a rise time at least 15%
slower than the VLT ramp. The sample rate is chosen to 50 Hz.

VLT: The VLT must be able to receive input from the PC and control the
motor.

Motor: The motor must be able to accelerate/decelerate the air with reference
to the dynamic demands.

I/O: 7 analogue inputs are required, one for each transducer. The pressure
transducers are arranged in pairs where one transducer measures the
velocity from 0 m

s
to 12 m

s
and one measures from 0 m

s
to 30 m

s
.

The control system has to select the right transducer at the present
velocity.

Further one analogue output is required for the VLT control. The I/O
card must be accessed using function calls in C.

Pressure transducer: The pressure transducers must give an output voltage
between 0 and 10 V DC each.

Temperature sensor: The temperature sensor must give an output voltage
between 0 and 10 V DC.

3.10 Internal Interfaces

PC�I/O: A device driver for Windows r
 2000 must be provided to make the
I/O card accesseble using C functions. Transfer rate and datatypes is
speci�ed by the PCI bus standard.

I/O�VLT: The interface between the I/O card and the VLT is given by an
analogue signal with voltage level 0�10 V DC.

I/O�Pressure transducer: The voltage level is 0�10 V DC.

I/O�Temperature sensor: The voltage level is 0�10 V DC.

3.11 External Interfaces

The external interface is the GUI, and it must contain the following:

� Text in English.

� The possibility to navigate through the interface using both mouse or
keyboard.

28 Chapter 3: Demand Specification

� A readout of the current air velocity (in m
s
) and air temperature (in ÆC)

in the wind tunnel.

� An indication of when the air velocity has reached the desired value.

� A possibility for a user to type in a desired air velocity (in m
s
) to the

system.

� A possibility to make the air velocity in the tunnel follow a user de�ned
ramp carateristic.

� A possibility to store a .csv �le with logged information about the air
velocity and temperature in the tunnel.

A suggestion for the graphical user interface is shown in �gure 3.2.

Ready for use:

Yes: No:

Submit

Submit

Test section temperature: xx,x deg C

xx,x m/s

File About

xx% is doneRamp proces:

Ramp function:

From [m/s] To [m/s] Time [Min]

STOP

Test section air velocity:

User preset test section air velocity: m/s

PelecanWare 1.0

Figure 3.2: The user interface of the system.

3.12 Accept Test Speci�cation

In the following the demands for the system are listed in two categories. One
for the graphical user interface (GUI) and one for the control algorithm. After
the list of demands, a speci�cation of how the demands must be tested will
follow.

3.12 Accept Test Specification 29

Demands for the GUI

Demand 1: All text in the GUI must be in English.

Demand 2: All buttons and text �elds must be accessible with both mouse
and keyboard and functional.

Demand 3: The numbers typed in the text �elds must be of the format xx.x,
where the x'es are the numbers from 0 to 9 and the �.� is a decimal
delimiter. The numbers after the �.� are optional. The range of input air
velocity is from 0 to 30 m

s
. If an invalid input is given, the GUI must

display an error message.

Demand 4: The GUI must give the user an indication on whether the wind
tunnel is �ready� or �not ready� for measurements. This must be done by
displaying a red or green indicator respectively.

Demand 5: The software must produce an ASCII-text �le in .csv format,
containing logged information about the air velocity and temperature
from the last invocation of the �Submit� button. The log �le will be
stored on the harddisk of the PC. A MatlabTM program PelecanPlot

can be used to load the data from the .csv �le and to make a plot of the
measurements.

Demands for the Control Algorithm

Demand 6: The sample frequency must ensure that the shortest rise/fall time
is sampled at least 10 times.

Demand 7: The controller must not be so fast that the VLT ramp limits the
speed. The accuracy of the controller must be �1%, that is a maximum of
0.3 m

s
at 30 m

s
. A 0:3 m

s
step, corresponding to a 100 mV input step, takes

10 ms when the ramp time from 0 V to 10 V is set to 1 s. It means that
the rise time and fall time of the controller must be at least tr > 0:08 s
as shown in �gure 3.3.

Demand 8: The overshoot must be within the demand of �1% accuracy.

Demand 9: The system must have no tracking error for ramp input.

Demand 10: The system must deliver a stable air velocity, within �1% of
the desired value, in the wind tunnel within the limits of 0�30 m

s
.

Test Speci�cation

Test 1: Start up the GUI and navigate through all the menus, buttons and
pop up windows, verifying that they are in English.

30 Chapter 3: Demand Specification

s0.1

1 V

0.9

0.1

t
r

Figure 3.3: Rise time requirements for the system. Same requirements are
used for the fall time. A VLT step of 1 V takes 0:1 s.

Test 2: Start up the GUI and navigate through the screen with only the
mouse. Ensure that all areas can be reached. Repeat the test only using
the keyboard. Ensure that all areas can be reached.

Test 3: Start the GUI. Move to a text �eld and type a legal number and see
that the software accepts the value. Type a value that is out of range and
see that the system gives an error and rejects the input. Type in strings
that contain illegal symbols or are of an invalid format, and see that the
system displays an error message and rejects the input.

Test 4: Start the GUI and type in a desired air velocity in the appropriate
text �eld. Submit the value and verify that the air velocity in the wind
tunnel starts building up. As the desired air velocity is submitted the
indication �not ready� will be shown and when the air velocity reaches
the desired value the indication will switch to �ready�.

Test 5: Start the GUI and submit a legal air velocity in the text �eld. Let
the air velocity build up and press the stop button after an appropriate
time. Go to the �le menu and choose the save option. Enter a �le name
and a location for the �le and press �save�. Open aMatlabTM command
window and choose the �import� option in the �le menu. Find the newly
saved �le from the wind tunnel control program and ensure that it has
the �.csv� extension. Load it into MatlabTM with PelecanPlot and
see that the output from PelecanPlot contains information of the time
span, air velocity and temperature of the just performed test in three
separate vectors.

Test 6: Use the procedure of test 5 to save and load a �le into MatlabTM

and use the plot command to plot the air velocity response vs. the time
vector and compute the sample time. Read the rise time from the plot
and compute the number of samples on a rise time by multiplying with

3.12 Accept Test Specification 31

the sample frequency. According to the demand this has to be at least
10.

Test 7 and 8: Use the procedure in test 5 to produce, save and load a positive
step response into MatlabTM. Plot the response vs. time with the plot
command. Verify that the overshoot present is within 0.1% of the steady
state air velocity. Compare the submitted value with the last recorded
values of the test, and see that they are the same within �1%. Compute
the rise time and verify that it ful�lls the demand. Repeat the procedure
for a negative step.

Test 9: Specify a ramp input to the system and submit the input. Use the
procedure of test 5 to save and load the result into MatlabTM. View
the resulting output with the plot command and compare it with the
submitted ramp. The system response must follow the speci�ed ramp
within �1%.

Test 10: Submit di�erent values of air velocity for the system and let the
same velocity be present for 3 min. Examine the resulting velocity with
MatlabTM and with a separate hand held instrument to measure the
air velocity in the test section. The air velocity must not vary more than
the speci�ed �1%.

Chapter 4

Modulization

The project is divided into six modules. Each module represents a main appli-
cation of the system and can be designed and tested separately. The modules
are speci�ed below.

Module 1 - Setpoint Changer

The primary purpose of this module is to ensure that the motor does not have
to respond to big steps. because the motor can be damaged by such steps.

When the system is started from zero it appears to act as a higher order system
and introduces a sort of delay from the start signal is given until the sensors
measure a pressure di�erence. The algorithm in this module also deals with
this delay. Not taking this in to account will reduce the system performance
as the controller will react very brutally to the delay and introduce a large
overshoot and a long settling time.

Module 2 - Classical Controller

This module contains the design, simulation and implementation of two clas-
sical controllers: A PID controller and a PID controller together with an input
�lter design.

Module 3 - State-space Controller

This module describes an alternative to the classical controller in module 2.
It deals with the design, simulation and implementation of a state space con-
troller.

Module 4 - Choice of Controller

In this module the controllers from module 2 and 3 are compared and the best
is chosen to be implemented in the system.

32

33

Module 5 - Hardware Con�guration

Module 5 deals with the practical con�guration of hardware to handle the
sensors and actuators in the wind tunnel.

Module 6 - Software

Module 6 describes the implementation of the chosen controller on the PC. It
also describes the design of the GUI and the other underlying software.

Chapter 5

Module 1 - Setpoint Changer

From the analysis of the motor, fan and VLT it is evident that the system
reacts di�erently when the setpoint is changed from zero than from any other
setpoint. In �gure 2.11 the step response of the system starting from rest is
compared to the step response of the system initially in motion. From this it
can be seen that the system shows signs of higher order dynamics when started
from rest and that it reacts slower. It has been observed that the system reacts
slower if a big leap in setpoint is made compared to a small change in setpoint.
This can be seen from �gure 2.10. This yields the need for a module to control
the change in setpoints.

5.1 Module Considerations

From the preceding paragraph it can be seen that the setpoint changer module
must ensure a slow start of the system. This can be done in several ways,
but the controller of the system must be taken into account. If the controller
contains an integral term, the controller has to follow the startup process. If
not, it will produce a substantial overshoot when it is put into operation since
no error has been accumulated in the integrator.

5.1.1 Module Demands

The demand speci�cation and the previous section yield the following demands
to the setpoint changer module:

� The setpoint transition from 0�10 V or from 10�0 V must be slower than
10 s.

� The current limiter of the VLT must not come into action under setpoint
change.

The demand to the transition time from 0�10 V is based on experimental
observations, to ensure that the VLT current limeter is not put into action.

34

5.2 Module Design 35

5.2 Module Design

The module is chosen to be a setpoint changer, placed before the system as
in �gure 5.1. This position ensures that an integral term in the controller of
the system always gets input from the sensors, such that an overshoot caused
by an integral term in the controller is avoided. Since this module controls the
setpoint, it is independent of the controller placed in the system, which means
that the system controller can be made as fast as the demands allow.

System
Setpoint
Changer

Setpoint
Controller

Figure 5.1: The placement of the setpoint changer module in the total system.

To control the setpoint, the setpoint changer must contain the following parts:

Decision function: The setpoint changer must be able to decide if the newly
submitted setpoint is larger or smaller than the previous submitted set-
point.

Ramp function: This function decides the rate of change in setpoint. The
module must have an upward and downward going ramp for each of the
two cases in the decision function.

Stop function: This function stops the changing of the setpoint when the
new setpoint value is reached.

The parts are connected as shown in �gure 5.2.

Larger

Smaller

New Setpoint

than previous

Smaller or larger Setpoint ramp

stop

Reference value

Figure 5.2: The principle of the setpoint changer module.

Transforming this description of the module into a �ow chart, yields the struc-
ture of �gure 5.3. It is programmed in a separate C function, where the variables
SetPoint_New, SetPoint_Old and Reference are the newly and previously

36 Chapter 5: Module 1 - Setpoint Changer

submitted setpoint and the reference input to the control algorithm, respec-
tivly. When the stop button is pressed, the setpoint value 0 will be passed to
the module.

Decrease

Increase

Start

Stop

SetPoint New

Reference

by 0.02

by 0.02 SetPoint New

ReferenceReference

SetPoint New

SetPoint New

=

No

=

Yes

SetPoint New

>

=

Reference

Reference

Reference � No

YesYes

No

SetPoint New

SetPoint Old

No

SetPoint Old

=
SetPoint New

Yes

Reference �

Figure 5.3: A �ow chart representation of the start setpoint changer module.

The execution rate of the routine follows the sample frequency (fs) since the
communication with the VLT follows the same rate. Therefore the function
itself does not contain any timer functions. This means that the function needs
to test if a new setpoint is submitted. This is done by the �rst of the decision
blocks in the �ow chart. If the setpoint is changed the steps in which it is
updated is given as:

Number of time steps = fs � 10 = 500 Steps

Number of voltage steps = fs � 10 = 500 Steps

Voltage resolution =
Max Voltage

Number of voltage steps
= 0:02 V

Step

(5.1)

Since the setpoint is altered in discrete steps of 0:02 V it is obvious that this
module will produce a quantization error. This error must be kept small in
order to keep the transition as smooth as possible. Further this quantization

5.3 Test of Setpoint Changer 37

implies that it is not certain that the accurate setpoint can be obtained. There-
fore the module must update the setpoint until it is reached or just past it. As
this happens, the reference variable is set to the submitted setpoint value to
ensure that the reference equals the setpoint.

5.3 Test of Setpoint Changer

The tests of the setpoint changer module are carried out with the use of a test
program that includes the module. The test program contains the module and
is able to read out the resulting reference value to the screen. The test contains
the following parts:

Part 1: A setpoint greater or smaller than the previous must result in an
upward or downward going ramp respectivly.

Part 2: The inclination of the ramp must result in a reference rise time of at
least 10 s

Part 3: The reference value must be kept stable after it reaches the setpoint.

The �rst part of the test is performed by passing di�erent setpoint values to the
module and observe the direction of the ramp. In the second part of the test the
values of Reference and SetPoint_Old are set to 0 and SetPoint_New to 10.
The transition time is found by counting the number of times the reference is
updated before it reaches 10. This number is multiplied by the sampling period
and compared to 10 s. The third part of the test is carried out by submitting
a setpoint value. As the setpoint is reached the output reference must not be
altered.

Performing the tests showed that the module is able to make a ramp in the
right direction and stop as it reaches the submitted setpoint. Further, the
transition time from 0 � 10 s is calculated. The number of steps is found to be
500 Steps, and with a sample time of 50 Hz the transition time yields:

Ramp time =
1

fs
� 500 = 10 s (5.2)

5.4 Conclusion

The test of the module showed that it was able to perform the desired tasks.
The transition time was not measured directly, but since it is presumed that
the sample rate is �xed, this procedure is valid.

Chapter 6

Module 2 - Classical
Controller

In this chapter two di�erent controller design strategies will be considered.
The �rst is a pure classical controller and the other is a classical controller in
conjunction with an input �lter. The two controller designs must perform the
same task, which is to make the output of the plant follow the input reference.
The two strategies are shown in �gure 6.1.

In the �rst part of the chapter the controller without input �lter is designed.
Through this section the di�erent design ideas are described in detail. The
design of the controller with �lter follows the same structure. The chapter is
rounded o� with a part describing the simulation and test of the two controllers
in order to compare the two controller strategies.

D(s) G(s)
r(s) e(s) u(s)

�

+ y(s)

(a)

D(s)
r(s) +

�

e(s)
G(s)

u(s)f(s)
F (s)

y(s)

(b)

Figure 6.1: The two closed-loop controllers to be designed in this chapter. (a)
is without �lter and (b) is with the �lter in the feedforward path.

6.1 Module Demands

From the demand speci�cation the following demands to the module can be
set:

38

6.2 Module Considerations 39

� Rise time tr � 0:2 s.

� Resulting closed-loop bandwidth !b < 15 rad
s
.

� Allowable overshoot Mp = �1%.

� Stable air velocity within �1% of the desired value.

� The module must be made with a classical controller.

The rise time demand is a result of the chosen sample rate. Since the maximum
sample rate is speci�ed in the demand speci�cation and the number of samples
in one rise time is speci�ed, the minimal rise time can be calculated. The
resulting bandwidth is speci�ed to make it possible to realize the controller
in a computer. A large bandwidth results in a demand for a high sample
rate. Since the sample rate is limited in the demand speci�cation a maximal
bandwidth is speci�ed.

6.2 Module Considerations

The controller to be designed in this chapter is a PID controller. The need for
the integral term is based on the steady state error demand. The derivative
term is needed to make the controller react fast enough without overshoot.
This means that the controller can be written as:

D(S) = K

�
Tds+

1

Tis
+ 1

�
= K

�
TdTis

2 + Tis+ 1

Tis

�
(6.1)

The design procedure for this module is based on the use of root loci together
with pole/zero maps and step responses. The root loci will be used to argu-
ment for a speci�c pole/zero placement and to give a hint about a desired gain.
Since the poles cannot be directly placed with the use of a classical controller,
the gain will have to be adjusted to yield the �nal design. This is done with
the use of root loci together with step responses where the rise time and over-
shoot demand will be examined. In the end the bandwidth is found to ensure
that the demand is followed. All this is at �rst done with a continuous-time
prototype controller. This controller is transformed into a di�erence equation
for implementation on the PC.

To design the two controllers, the step-up transfer function (Gu(s)) is used.
This is possible since the step-up and step-down transfer functions are similar
in structure in terms of poles and zeros. Gu(s) is chosen since it is faster than
the step-down transfer function (Gd(s)) which is most critical in terms of rise
time demands. When the designs are completed it must be veri�ed that it is
usable for the step-down transfer function as well.

40 Chapter 6: Module 2 - Classical Controller

6.3 Design of Controller without Filter

The system has the transfer function shown in equation 2.37 which is repeated
here for convenience:

Gu(s) =
0:685

s2 + 6:44s + 19:8
(6.2)

From this it can be seen that the system introduces a pair of complex poles in
p1; p2 = �3:2 � 3:07j and no zeros. It can be seen from equation 6.1 that the
PID controller contains a real pole p3 placed in the origin and two zeros, z1; z2.
The two zeros of the controller can be placed freely in the complex plane to
give, together with the gain, the desired dynamic response of the closed-loop
system.

To determine an appropriate placement of the zeros the following knowledge of
root loci is used: If the number of real poles and zeros to the right of a selected
testpoint is odd the locus will be located on the real axis in the testpoint.
Further, the fact that poles always move towards either a zero or �1 as the
gain increases is used. From this it is obvious that the zeros must be placed
in the left half plane to prevent the poles from becoming unstable. This leaves
the following possible placements of the zeros:

Case 1: As a complex conjugate pair. A special case is to place the zeros to
cancel out the complex poles p1 and p2 of the system.

Case 2: As real and distinct zeros.

The special case of case 1 means that the in�uence of the complex poles of the
system is removed from the dynamic response. This gives a system dominated
by the real pole from the controller that will move towards �1 along the
real axis. This means that the system will act as a �rst order system. To be
able to exactly cancel out p1 and p2 it is obvious that the model must be very
accurate at all times. Therefore this zero placement is considered impractical
in this context.

Placing the zeros as a complex pair in general means that the �rst order be-
haviour will depend on the gain. If the gain is selected to be of such size that
p3 is moved more than a factor 10 away from the complex poles, the oscillary
behaviour of the complex poles will be dominant. This means that a controller
that ful�lls the rise time demand will produce an overshoot.

The result of placing the zeros at two distinct points on the real axis yields
the pole/zero map in �gure 6.2.

From the knowledge of root loci it can be derived that the root locus will be
located on the real axis to the left of z2. The locus will not be on the real
axis between z2 and z1 and then again on the real axis from z1 to the origin.
This means that the poles can all be moved to the real axis to give a system

6.3 Design of Controller without Filter 41

z2 p3

p2

p1

z1

Figure 6.2: The pole/zero map of case 2.

without overshoot. The resulting root locus is shown in �gure 6.3, where it is
obvious that a relatively large gain is required to make the poles real. If the

−16 −14 −12 −10 −8 −6 −4 −2 0 2
−8

−6

−4

−2

0

2

4

6

8

Real Axis

Im
ag

 A
xi

s

p
1

p
2

p
3z

1z
2

Figure 6.3: The root locus of case 2.

amount of gain required to move the poles is too high, a real zero can be used
to damp the oscillation of the complex poles. The size of the gain is bounded
by the bandwidth requirement, since larger gain yields a larger bandwidth.

After considering the di�erent placements of z1 and z2 it is chosen to use case
2. This is done because it is not very likely to result in an unstable system.

To make the zeros real, the numerator of D(s) in equation 6.1 must have a

42 Chapter 6: Module 2 - Classical Controller

positive discriminant which means:

T 2
i � 4 � Ti � Td � 1 > 0 , Ti > 4Td (6.3)

After pointing out the guidelines for the pole and zero placement the iterative
process of �nding the exact placement and the resulting gain can begin. This
is done using the MatlabTM commands rlocus and rlocfind.

At �rst the placement of the slowest zero z1 is considered.

−5 −4 −3 −2 −1 0 1
−4

−3

−2

−1

0

1

2

3

Real Axis

Im
ag

 A
xi

s z
1

p
3

p
2

p
1

(a)

−25 −20 −15 −10 −5 0 5
−30

−20

−10

0

10

20

30

Real Axis

Im
ag

 A
xi

s

p
1

p
2

p
3z

1

(b)

Figure 6.4: The root locus of the closed-loop transfer function T (s) with z1
placed either close to (a) or away from (b) the imaginary axis. z2
is chosen to be 10 + z1 in both situations.

In part (a) of �gure 6.4 it can be seen that the complex poles of T (s) move
into the right half plane at certain gains. If the gain is selected low enough
to prevent this, the dynamics of the complex poles will dominate the response
and yield a response with possible overshoot. From part (b) it can be seen that
the stability is ensured. Instead p1 and p2 can not be moved very far without
the use of high gains meaning that the �rst order dynamics of the real pole
will be the dominant and that the step response will be slow. As a compromise
it is chosen to place z1 near the real part of p1 and p2.

The location of z2 decides how far p1 and p2 have to �travel� to reach the real
axis. The further z2 is away from z1 the more gain is needed to make p1 and p2
real. But if the two poles are close together the integral and derivative term of
the PID will not be working optimal. To compromise between these two cases
it is chosen that Ti � 5 � Td.

From this it is chosen that z1 = �3 and z2 = �7. To calculate Ti and Td from
these zeros the coe�cients of the numerator in equation 6.1 are matched with
(s� z1)(s� z2).

6.3 Design of Controller without Filter 43

s2 � (z1 + z2)s+ z1z2 = K(TiTds
2 + Tis+ 1),

Ti =
�(z1 + z2)

K
Td =

1

�(z1 + z2)

K = z1z2

(6.4)

This results in Ti = 0:476 and Td = 0:1.

The gain is adjusted to give the desired result, by using the command rlocfind
and the step response. The �rst thing noted is that the poles cannot all be
real without using a large gain which is unacceptable due to the bandwidth
requirements. Instead it is chosen to let the poles become complex and then
control the overshoot with z1 and the gain. To �nd the proper gain, di�erent
values are tested and the resulting step response of the closed-loop transfer
function T (s) is examined in terms of rise time and overshoot. The resulting
step response is shown in �gure 6.5.

Time (sec.)

A
m

pl
itu

de

Step Response

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
From: U(1)

T
o:

 Y
(1

)

Figure 6.5: The resulting step resonse of the PID controller design.

It shows that the controller has no overshoot and that the rise time ful�lls
the demand. Finally the bandwidth of T (s) is examined using theMatlabTM

command ltiview. It is found that the bandwidth is !b = 10:4 rad
s

which is
inside the limits.

The resulting gain is 108 which means that the �nal continuous-time PID
controller has the following form.

D(s) = 108

�
0:0476s2 + 0:4762s + 1

0:4762s

�
(6.5)

44 Chapter 6: Module 2 - Classical Controller

It results in the pole/zero map in �gure 6.6 where the real part of the complex
poles is placed near z2. Further, the slowest pole p3 is moved towards z1 to
make the total response fast.

Real Axis

Im
ag

 A
xi

s

Pole−zero map

−7 −6 −5 −4 −3 −2 −1 0 1
−6

−4

−2

0

2

4

6

z
1

z
2

p
1

p
2

p
3

Figure 6.6: The resulting pole and zero location of the closed-loop transfer
function.

To verify that the resulting continuous-time PID controller is usable together
with Gd(s) the step response and bode plot of the closed-loop transfer function
is used. The results are presented in table 6.1 together with the results for
Gu(s).

System tr [s] ts [s] Mp [%] !b [
rad
s
] ess step ess ramp

Gu(s) 0.2 1.3 0 10.4 0 0.13
Gd(s) 0.3 0.5 0 6.71 0 0.12

Table 6.1: The di�erent describing values of the continuous-time prototype
controller. The calculation of the ess to a ramp input is based on
a unity ramp input.

The table shows that the controller ful�lls the demands with the step down
transfer function as well.

6.3.1 Discretisation

The continuous-time controller transfer function D(s) must be transformed
into a discrete-time di�erence equation before it can be implemented on the
PC. To make this transformation, the zero order hold (ZOH) method is used.

6.3 Design of Controller without Filter 45

It is de�ned as:

H(z) = ZOH(H(s)) = (1� z�1)Z

�
H(s)

s

�
(6.6)

where the Z denotes the z-transform, H(s) is the continuous-time transfer
function and H(z) is the discrete-time transfer function. Applying this to the
PID controller transfer function D(s) yields the following, where Ts is the
sample period:

ZOH(D(s)) = D(z) = (1� z�1)Z

�
D(s)

s

�
,

D(z) = (1� z�1)Z

��
K

s
+

K

Tis2
+KTd

��
,

D(z) = K +
KTsz�1

Ti(1� z�1)
+ (1� z�1)KTd

(6.7)

To compare the step response of D(z) with the step response of D(s), the
values of Td, Ti, Ts and K are inserted in D(z). This is done to see if any addi-
tional overshoot is introduced by the discretisation process. In order to produce
the step response of D(z) the discrete-time equivalente of Gu(s) is calculated
through ZOH and the closed-loop transfer function T (z) is calculated.

Time (sec.)

A
m

pl
itu

de

Step Response

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4
From: U(1)

T
o:

 Y
(1

)

Figure 6.7: The plot of the step response of T (z) together with the step
response of T (s).

In �gure 6.7 it can be seen that the discretisation results in additional over-
shoot. This means that the discrete-time realisation of the controller must be

46 Chapter 6: Module 2 - Classical Controller

adjusted to ful�ll the demands. It is clear from �gure 6.7 that the gain needs to
be reduced. The result of the adjustment isK = 28, Td = 0:083 and Ti = 0:375.
The reason for the movement of the zeros is to accomplish a better damping
of the oscillations. The resulting continuous-time controller compared with the
discrete-time realisation is shown in �gure 6.8

Time (sec.)

A
m

pl
itu

de

Step Response

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
From: U(1)

T
o:

 Y
(1

)

Figure 6.8: The step response of the adjusted discrete-time and continuous-
time controller.

With these changes to the continuous-time controller the discrete-time reali-
sation has the data shown i table 6.2.

System tr [s] ts [s] Mp [%] !b [
rad
s
] ess step ess ramp

Gu(s) 0.7 2.1 0 3.2 0 0.39
Gd(s) 0.7 1.9 1 2.7 0 0.38
Gu(z) 0.4 2.6 0 5.7 0 0.013
Gd(z) 0.5 1.8 0 4.4 0 0.013

Table 6.2: The di�erent describing values of the continuous-time and
discrete-time controller. The ess to ramp input is calculated for
a unity ramp for the continuous-time prototype, and simulated in
SimulinkTM with the setpoint changer ramp for the discrete-time
controller.

The table shows that the resulting discrete-time and continuous-time con-
trollers are slowed down compared to controllers in table 6.1 to be able to

6.4 Design of Controller with Filter 47

ful�ll the demands after the discretisation. The �nal step is to transform the
result into a di�erence equation.

Since D(s) describes the transfer function from the error e(s) to the control
signal u(s) the D(z) can be rewritten to a di�erence equation:

D(z) =
u(z)

e(z)
= K +

KTsz�1

Ti(1� z�1)
+ (1� z�1)KTd ,

u(z)(1� z�1) =

e(z)(K +KTd) + e(z)

�
K

�
Ts
Ti
� 1� 2Td

��
z�1

+e(z)KTsz
�2

(6.8)

Applying the inverse z-transform (Z�1) to equation 6.8, the following di�erence
equation is obtained:

u[n] =

e[n](K +KTd) + e[n� 1]

�
K

�
Ts
Ti
� 1� 2Td

��
+ e[n � 2]KTd + u[n� 1]

(6.9)

By inserting the values for K, Ti and Td as found in section 6.3, the �nal
di�erence equation becomes:

u[n] = 30:33e[n] � 31:17e[n � 1] + 2:33e[n � 2] + u[n� 1] (6.10)

6.4 Design of Controller with Filter

The controller �lter used in this context will, as stated earlier, be placed in
the feedforward path of the control loop. This means that the purpose of the
�lter is to remove any noise on the error signal in the feedback controller. The
largest noise sources in the system is considered to be the motor and VLT or
more precisely the switch harmonics of the VLT and the AC-source voltage
to the motor. The switching noise of the VLT is of very high frequencies, but
the source voltage to the motor vary from 0�50 Hz. This means that the �lter
needs a very low cuto� frequency. On the other hand, the �lter should have as
little in�uence on the resulting closed-loop step response as possible, meaning
that the poles of the �lter must not be near 0 rad

s
. As a compromise it is chosen

that the �lter F (s) should be a second order lowpass �lter with two real poles
in s = �5. To make the �lter have 0 dB gain in the pass band, the �lter gets
the following transfer function:

F (s) =
25

s2 + 10s+ 25
(6.11)

48 Chapter 6: Module 2 - Classical Controller

A higher order �lter will give better damping of the higher frequencies, but
it will also introduce more poles. It is chosen as a compromise between high
damping and number of poles to make a second order �lter.

With this choice of �lter the number of poles adds up to �ve, with the two
complex poles p1; p2 = �3:2 � 3:07j of the Gu(s) transfer function, the con-
troller pole p3 = 0 and the �lter poles p4; p5 = �5. The placement of the zeros
is based on the same considerations as in the previous section, and again the
choice is to make the zeros real. The �nal placement of the zeros is found to
be z1 = �2 and z2 = �7. This results in the pole/zero map of �gure 6.9.

Real Axis

Im
ag

 A
xi

s

Pole−zero map

−8 −7 −6 −5 −4 −3 −2 −1 0 1
−4

−3

−2

−1

0

1

2

3

4

z
1

z
2

p
5

p
4 p

3

p
2

p
1

Figure 6.9: Pole/zero placement of the feedforward path of the controller us-
ing an input �lter.

From the knowledge of root loci it can be seen that the root locus will be
placed to the left of z2 and to the right of z1. Plotting the root locus shows
that the complex poles of the system do not become real with time, but rather
moves towards the right half plane. This means that the amount of gain used
in the controller must be kept small enough to prevent p1 and p2 from becom-
ing unstable. On the other hand, the gain must be high enough to move p3
away from the imaginary axis, to make the closed-loop step response fast. The
resulting root locus is shown in �gure 6.10.

The gain is found to be 23 which gives the desired outcome. Then the transfer
function for the continuous-time PID controller Df(s) can be calculated with
the use of equation 6.4 to yield:

Df(s) = 23

�
0:0714s2 + 0:642s+ 1

0:642s

�
(6.12)

The resulting closed-loop step response of the continuous-time system with

6.4 Design of Controller with Filter 49

−10 −8 −6 −4 −2 0 2
−8

−6

−4

−2

0

2

4

6

8

Real Axis

Im
ag

 A
xi

s p
3

p
2

p
1

p
4

p
5

z
1

z
2

Figure 6.10: The root locus of the controller with input �lter.

�lter is shown in �gure 6.11. It is possible to increase the gain even more in
order to get the same response as for Gu(s), but then the response to Gd(s)
results in an overshoot. The �gure shows that the oscillations of the complex
poles are not fully damped by the zero.

Time (sec.)

A
m

pl
itu

de

Step Response

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
From: U(1)

T
o:

 Y
(1

)

Figure 6.11: The step response of the controller with �lter and the Gu(s).

To verify this, the resulting controller and �lter is tested together with Gd(s)
to see if it ful�lls the demands. The results are presented in table 6.3 together
with the results for Gu(s).

From the table it is obvious that the combination of �lter and controller results

50 Chapter 6: Module 2 - Classical Controller

System tr [s] ts [s] Mp [%] !b [
rad
s
] ess step ess ramp

Gu(s) 0.9 3.9 0 15 0 0.81
Gd(s) 1.0 2.9 0 11 0 0.78

Table 6.3: The describing values of the continuous-time controller with input
�lter. The ess for ramp input is calculated for a unit ramp.

in a very slow response that has large steady state errors for a ramp input.

6.4.1 Discretisation

The discretisation uses the same method as with the controller in the previous
section. Here the ZOH is applied to both the �lter F (s) and the controller
Df (s).

Applying the ZOH method to the �lter gives the following:

ZOH(F (s)) = F (z) = (1� z�1)Z

�
F (s)

s

�
,

F (z) = (1� z�1)Z

�
25

s (s2 + 10s+ 25)

�
,

F (z) = (1� z�1)
z
�
z
�
1� e�5Ts � 5Tse

�5Ts
�
+ e�10Ts � e�5Ts + 5Tse

�5Ts
�

(z � 1) (z � e�5Ts)2
,

F (z) =
z
�
1� e�5Ts � 5Tse

�5Ts
�
+ e�10Ts � e�5Ts + 5Tse

�5Ts

(z � e�5Ts)2

(6.13)

Reorganizing the equation and applying the inverse z-transform (Z�1) to equa-
tion 6.13 the following di�erence equation is obtained:

f [n] =

e[n � 2]
�
e�10Ts � e�5Ts + 5Tse

�5Ts
�
+ e[n� 1]

�
1� e�5Ts � 5Tse

�5Ts
�

� f [n� 2]e�10Ts + f [n� 1]2e�5Ts

(6.14)

In equation 6.14, the e[n] denotes the input signal to the �lter and f [n] is the
�ltered output. Inserting the value for the sample time Ts = 0:02 s results in
the di�erence equation:

f [n] = 4:679 � 10�3e[n� 1] + 4:377 � 10�3e[n� 2]

+ 1:819f [n � 1] + 0:8187f [n � 2]
(6.15)

The discrete-time controller has the form of equation 6.9, and with the values
of K, Ti and Td it becomes:

u[n] = 48:6e[n] � 27:4e[n � 1] + 2:6e[n� 2] + u[n � 1] (6.16)

6.5 Simulation of the Classical Controllers 51

The step response of the resulting system is shown in �gure 6.12.

Time (sec.)

A
m

pl
itu

de

Step Response

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4
From: U(1)

T
o:

 Y
(1

)

Figure 6.12: The step response of the discret-time closed-loop system with
input �lter Tf(s).

Again some adjustments are needed to make the discrete-time controller ful�ll
the requirements. In this context the demands can be ful�lled by reducing
the gain from K = 23 to K = 19:5. This gives the following step response
(�gure 6.13), di�erence equation (equation 6.17) and characteristics (table 6.4):

u[n] = 39:5e[n] � 23:2e[n � 1] + 2:2e[n � 2] + u[n� 1] (6.17)

System tr [s] ts [s] Mp [%] !b [
rad
s
] ess step ess ramp

Gu(s) 1.9 4.4 0 9.7 0 0.95
Gd(s) 1.3 3.4 0 11 0 0.93
Gu(z) 0.7 4.9 0 3.5 0 0.033
Gd(z) 0.8 4.0 0.5 2.8 0 0.33

Table 6.4: The di�erent describing values of the continuous-time and
discrete-time controller with input �lter.

6.5 Simulation of the Classical Controllers

To verify the controller designs further a set of simulations are conducted. The
simulations are produced with the MatlabTM toolbox SimulinkTM and are

52 Chapter 6: Module 2 - Classical Controller

Time (sec.)

A
m

pl
itu

de

Step Response

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
From: U(1)

T
o:

 Y
(1

)

Figure 6.13: The step response for the continuous-time and discrete-time ad-
justed controller.

described together with the simulation model in appendix A.1. The simulations
have to show the following:

1. The controllers' use of control signal.

2. The noise rejection ability of the controllers.

3. The response to ramp input.

The simulation model is shown in �gure 6.14.

Control signal u(t)

Reference signal r(t)

Output y(t)

Noise Input Noise Input

Step

Scope

Saturation

K

1

Proportional
term

z−1

Ts*K/Ti(z)

Integral term

0.685

s +6.44s+19.82

G_u(s)

K*Td.z−K*Td

z

Derivative term

Figure 6.14: The simulation model used in all the simulations. To simulate the
Df controller the �lter is added in the feedforward path.

6.6 Test of the Classical Controllers 53

6.5.1 Results

All plots from the simulations are shown in appendix A.1, and the results are
summarized here.

Simulations for Controller Without Filter

The control signal has an approximate overshoot of 20% followed by the same
amount of undershoot. The response to ramp input is a steady state error of
0:013 on the setpoint changer ramp, and 0:0013 on the slower ramp.

The results of the noise simulations are placed in table 6.5.

Sine Feedback Control Signal
5 Hz Visible� None
50 Hz None None
1 kHz None None�

Random Dominant� None�

Table 6.5: The e�ects of noise on the output signal for the design without
�lter. An (�) indicates that the control signal is varying dramaticly.

Simulations for Controller With Filter

The control signal has no overshoot. The response to a ramp is a steady state
error of 0:033 for the setpoint changer ramp and 0:0033 on the slower ramp.

The results of the noise simulations are placed in table 6.6.

Sine Feedback Control Signal
5 Hz None None�

50 Hz None None
1 kHz None None

Random Dominant None�

Table 6.6: The e�ects of noise on the output signal for the design with �lter.
An (�) indicates that the control signal is varying dramaticly.

6.6 Test of the Classical Controllers

The tests of the two classical controllers has been performed by implementing
the di�erence equations 6.10 and 6.17 in the control software that is described

54 Chapter 6: Module 2 - Classical Controller

in chapter 10 on page 77. The tests are further described in appendix F.

The tests show that the tunnel does not behave as it was expected from the
model derived in chapter 2.4 on page 12. The primary reason for this deviation
in the meassured signals is the calibration of the sensors. The sensor output
from the six sensors are shown in �gure F.1. Another observation done in the
test was that the VLT went into current saturation much earlier than expected.
This means the control signal could not be altered as fast as expected. Because
the sensors have been mounted very late in the project period it has not been
possible to take these situations into account in other ways than to try to
implement the designed controllers and tune them until a satisfactory result
was obtained.

The controller without �lter had to be altered to work acceptably. It resulted
in a tr = 1:8 s and an overshoot af approximately 20%. The tests showed that
the controller did not perform well on steps, but was acceptable with ramp
inputs. The controller with �lter did not need alterations to work acceptably.
The results of the tests gave a slow controller with a tr = 4 s, but no overshoot.
It performes well on step inputs but is not as good as the controller without
�lter on ramp inputs. Both controllers do not settle on a steady setpoint but
this can be due to noise on the measurements.

6.7 Conclusion

Through this chapter two classical controllers have been designed for the wind
tunnel. The �rst is a standard PID controller and the other is a PID con-
troller with input �lter. It has been seen that it is possible to design the two
controllers and the �lter, by �rst making a continuous-time prototype and
then discretisize it to implement it in the computer. It was found that directly
implementing the discrete-time version of the continuous-time prototype did
not give a satisfactory result. The reason for this is the use of the zero order
hold method for discretisation. A better result could be obtained by the use
of a di�erent method, such as a bilinear transformation or by applying a dis-
crete design method. The resulting controllers were then simulated with the
MatlabTM toolbox SimulinkTM to give a satisfactory result.

Tests of the controllers showed that only the controller with �lter could be
implemented directly in the tunnel though it did not fully behave as expected.
It showed problems with ramp input which might be caused by the �lter. The
problem could be solved by applying a discrete-time �lter design. The controller
without �lter had to be altered in order to work. In both cases problems with
the calibration of the transducers and the VLT current limiter is to blame.

Chapter 7

Module 3 - State-space
Controller

State-space is a way of describing a system's input-output behaviour in terms
of its internal states and it is based on the di�erential equations of the system.
Moreover, state-space controller design has several important advantages over
classical control methods:

� It can deal with multi-input, multi-output (MIMO) systems in the same
way that it deals with single-input, single-output (SISO) systems.

� Even if some of the states of the process/plant cannot be measured, as is
the case with the wind tunnel, the introduction of an observer (estimator)
makes it possible to estimate the states with a good precision.

� A state-space controller can be designed using a divide and conquer ap-
proach, that is, it is possible to design the control law and the observer
in separate steps.

� All the poles of the system can be placed freely.

� It uses linear algebraic expressions in the form of matrix gains which are
very convenient to implement in computers.

7.1 General State-Space Description

The input-output relationship of a system can be represented with a state-
space description as shown in �gure 7.1 where the state-space equations are
given by:

_x = Ax +Bu

y = Cx+Du
(7.1)

and the bold letters denote vectors or matrices.

Equation 7.1 is the general state-space description of a MIMO system. Since
the wind tunnel has only on input and one output, all systems described in
the following will be SISO systems.

55

56 Chapter 7: Module 3 - State-space Controller

+ +
+

+

Ru

D

_x

A

y
B C

x

Figure 7.1: Block diagram of a general state-space description of a system.

7.1.1 Controllability and Observability

A system is said to be controllable if there is a coupling between the control
signal u and each of the states of the system.

A formalized method to test for controllability is to compute the controllability
matrix C:

C =
�
B AB A2B : : : An�1B

�
(7.2)

If it has full rank, the system is controllable.

Observability refers to the ability to measure all states of the system. If the
observability matrixO of a system has full rank, then it is said to be observable.
O is given by:

O =

2666664
C

CA

CA2

...
CAn�1

3777775 (7.3)

7.2 State-Space Description of the Wind Tunnel

In section 2.4 on page 12 the step-up transfer function of the wind tunnel was
found to be:

Y (s)

U(s)
=

0:685

s2 + 6:44s + 19:8
(7.4)

from which the di�ential equation of the system is found to be:

0:685u = �y + 6:44 _y + 19:8y ,

u =
1

0:685
(�y + 6:44 _y + 19:8y)

(7.5)

Then the two states x1 and x2 are chosen from the di�erential equation:

x1 =
1

0:685
_y; x2 =

1

0:685
y (7.6)

7.2 State-Space Description of the Wind Tunnel 57

and the state derivatives become:

_x1 =
1

0:685
�y = u� 6:44x1 � 19:8x2

_x2 =
1

0:685
_y = x1

(7.7)

from which the full state-space description of the wind tunnel can be derived:

_�x1
x2

�
=

�
�6:44 �19:8
1 0

� �
x1
x2

�
+

�
1
0

�
u (7.8)

y =
�
0 0:685

� �x1
x2

�
(7.9)

Equations 7.8 and 7.9 are in control canonical form where the coe�cients of
the characteristic polynomial are written in the �rst row of the matrixA (with
opposite signs) and the coe�cient(s) of the numerator polynomial are written
in C.

7.2.1 State Feedback Control

As with classical control, feedback is used to control the behaviour of systems
described in state-space. In state feedback designs the states x of the system are
fed back (hence the name state feedback), and not the outputs of the system,
as in classical control designs. This has the advantage that the amount of
feedback of each of the dynamic elements (states) can be chosen arbitrarily,
whereas in classical control designs only one feedback for the whole system
can be chosen (one overall feedback in cascaded systems). Figure 7.2 shows a
system with state feedback.

++

R

A

B C
_x

�F

yu
x

Figure 7.2: State feedback.

From the �gure it can be seen that the feedback law is:

u = �Fx (7.10)

Inserting this in equation 7.1 gives:

_x = Ax+B(�Fx) = (A�BF)x (7.11)

58 Chapter 7: Module 3 - State-space Controller

which is the full state-space description of �gure 7.2.

By choosing the values of F appropriately, the eigenvalues of the closed-loop
can be determined.

To make a state feedback controller it must be ensured that the system is
controllable.

7.2.2 Observer Design

An observer is used to estimate some or all of the states of a process that cannot
possibly or easily be measured. Designing an observer is mostly a cheap and
e�cient way to obtain information about the system.

A full-order observer estimates all the states of a process, whereas a reduced-
order observer only estimates some of them (usually those that cannot be
measured otherwise). Although a reduced-order observer is slightly simpler, a
full-order observer has the great advantage that the �nal closed-loop controller
is less sensitive to sensor noise [fc, p 527].

As the observer will never make a precise estimate of the system's true states,
the di�erence between the estimate and the true states is fed back to the ob-
server. If the feedback gain K is su�ciently large, in comparison to the overall
feedback gain, the observer error will be reduced quickly and the estimated
states can then be used as a good substitute to the real states.

Figure 7.3 shows a full-order observer where an estimate x̂ of all the states of
the process is given.

−

+

−

Observer

++

Process

R_x̂

A

B C

K

ŷx̂

u y

Figure 7.3: A full-order observer.

In the case of a SISO system, when the di�erence between the real output y
and the estimated output ŷ is fed back, the observer states can be described
as:

_̂x = Ax̂+Bu+K(y �Cx̂) (7.12)

7.2 State-Space Description of the Wind Tunnel 59

where the feedback matrix is given by:

K =

26664
k1
k2
...
kn

37775 (7.13)

The characteristic polynomial of the closed-loop observer is given by [fc, p 516]:

det [sI � (A�KC)] = 0 (7.14)

Comparing the roots of this polynomial with the desired observer poles, the
values of the feedback matrix K can be determined. An alternative and easier
way to determineK is to use theMatlabTM command place(A,C,Po)where
A and C are the matrices A and C and Po is a vector containing the desired
observer poles.

Before designing an observer it must be ensured that the system is observable.

Integral Control

In integral control designs the integral of the error e (the di�erence between
the outputs y and the reference signals yr), as well as the states of the system
x, are fed back to the control signals u (see �gure 7.4). Like in classical control

++−−

+
−

R

A

B C
_x

y

y
r

F0

Fi

Rxi _xi

x

e

u

Figure 7.4: An integral controller.

designs, this gives a zero steady-state error and introduces an extra pole pi.

The matrix F0 and the scalar Fi are the feedback gains and the integrator gain
respectively. This yields that

_xi = e = Cx� yr (7.15)

Augmenting the state equations with equation 7.15 gives:

_�xi
x

�
=

�
0 C

0 A

� �
xi
x

�
+

�
0
B

�
u�

�
1
0

�
yr (7.16)

60 Chapter 7: Module 3 - State-space Controller

and the feedback law is:

u = �
�
Fi F0

� �xi
x

�
= �F

�
xi
x

�
(7.17)

The characteristic polynomial of the closed-loop system including the integral
controller is given by:

det [sI� (Ai �BiF)] = 0 (7.18)

where

Ai =

�
0 C

0 A

�
and Bi =

�
0
B

�
(7.19)

As with the observer, the feedback gain matrix F can be found, using the
MatlabTM command place, but since the muliplication of the matrices Bi

and F is in reverse order, the expression should be rewritten, using the fact
that [fc, p 747]:

(A � FB)T =
�
AT � (FB)T

�
=
�
AT �BTFT

�
(7.20)

This means that the place command is place(Ai',Bi',Pc)' where Pc con-
tains the poles of the closed-loop system and ' denotes the transpose of a
matrix. With the integrator an additional pole is added to the system and this
must be chosen and placed in Pc.

7.3 State-space Description of the Compensator

To be able to implement the integral controller together with the observer (this
con�guration is called a compensator) on the PC, one total state-space model
must be set up.

Figure 7.5 shows a block diagram of the total system, including the wind tunnel
model.

From this it can be seen that:

u = �F0x̂� Fixi

ŷ = Cx̂
(7.21)

which gives:

_xi = y � yr
_̂x = Ax̂+Bu+K(y � yr)

= Ax̂�BF0x̂�BFixi +Ky �KCx̂

= (A�BF0 �KC)x̂�BFixi +Ky

(7.22)

7.3 State-space Description of the Compensator 61

Integral Controller

−
+

−

− yu

++

−

++

Observer

+

−

Wind Tunnel Model

F0

Fi

R_x
B C

A

K

R_x̂
B C

ŷx̂

x
yr R xi_xi

A

Figure 7.5: Block diagram of the full system.

From the states and their respective derivatives in equations 7.22 the state-
space description of the compensator can be set up:�

_xi
_̂x

�
=

�
0 0

�BFi A�BF0 �KC

� �
xi
x̂

�
+

�
1 �1
K 0

� �
y
yr

�
u =

�
�Fi �F0

� �xi
x̂

� (7.23)

7.3.1 Discretisation of the Compensator

In order to implement the compensator in a computer a discrete-time model is
needed. The following shows the manual procedure for converting a continuous-
time state-space description to a di�erence equation that can be implemented
in a computer.

Equations 7.1 describe the di�erential equations for a system and the solution
to the two equations is [dc, p 105]:

x(t) = eA(t�t0)x(t0) +

Z t

t0

eA(t��)Bu(�)d� (7.24)

which is a continuous-time equation. To come up with a discrete-time repre-
sentation, a sample is used to get a di�erence equation. If t = kT + T and
t0 = kT , the solution is:

x(kT + T) = eATx(kT) +

Z kT+T

kT

eA(kT+T��)Bu(�)d� (7.25)

62 Chapter 7: Module 3 - State-space Controller

This equation still has the continuous time history u(�) from the sample in-
terval because the equation is not dependent on the type of hold. With zero
order hold (ZOH) u(�) is a constant in the sample interval:

u(�) = u(kT) for kT 5 � < kT + T (7.26)

and to simplify equation 7.25:

� = kT + T � � (7.27)

Applying ZOH to equation 7.25 gives:

x(kT + T) = eATx(kT) +

�Z T

0

eA�d�

�
Bu(kT) (7.28)

The matrices � and � are introduced to simplify equation 7.28 where

� = eAT (7.29)

and

� =

�Z T

0

eA�d�

�
B (7.30)

The di�erence equations on standard form can be reduced to

x(k + 1) = �x(k) + �u(k)

y(k) = Cx(k) +Du(k)
(7.31)

Taking the z-transform of equation 7.31 with D = 0 gives:

(zI��)X(z) = �U(z)

Y (z) = CX(z)
(7.32)

and the discrete transfer function is:

Y (z)

U(z)
= G(z) = C(zI��)�1� (7.33)

The last step towards a discrete-time implementable model is to take the in-
verse z-transform of the transfer function of equation 7.33 and write it on
recursive form.

In MatlabTM the matrices � and � can easily be calculated with the func-
tion c2d(ss_sys,Ts,'zoh') where ss_sys = ss(A,B,C,D) is the state-space
representation of the compensator, Ts is the sample time and 'zoh' speci�es
that a zero-order-hold sampling is to be used. In addition to that the command
tf(sysd) can produce the discrete-time tranfer function. The argument sysd
is the discrete-time state-space description given by c2d.

7.4 Choice of Pole Locations 63

7.4 Choice of Pole Locations

The three closed-loop poles Pc have been chosen by implementing the discrete-
time compensator described by equations 7.40 and 7.41 (they will be examined
later) in SimulinkTM and iteratively selecting values of Pc, until the closed-
loop step-response has the desired overshoot, rise-time and settling time. The
values of Pc are:

Pc = �
�
8 9 + 7j 9� 7j

�
(7.34)

For the step-up transfer function this results in a rise time tr of 0.296 s, a sett-
ling time ts of 0.784 s and zero overshoot. For the step-down transfer function
this results in a rise time of 0.298 s, a settling time of 0.575 s and an overshoot
Mp of 0.5%. The values have been found in SimulinkTM.

The reason why the choice of a set of complex conjugate poles results in a very
small overshoot is that one state of the system consisting of VLT, motor and
wind tunnel has poor observability. The two states are assumed to be the air
acceleration (x1) and the air velocity in the test section (x2).

The poor observability is associated with x1 which is not actually measured.
This, in turn, means that oscillations in the air acceleration caused by complex
conjugate poles, are only faintly visible on the air velocity in the test section.
A conclusion to this is that the stagnation box works as intended.

The choice of real poles would result in a discrete-time step-response with a
long rise time or a shape as shown in �gure 7.6.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

A
m

pl
itu

de

Time [sec]

Figure 7.6: Step responses as a result of using real closed-loop poles.

Since the estimated state vector x̂ is fed back through the gain matrix F0, the
two observer poles Po should be faster than the two fastest closed-loop poles
of the whole system by a factor 2�6 [fc, p 525]. Hence, the observer poles have
been chosen as:

Po = �
�
36 + 28j 36� 28j

�
(7.35)

64 Chapter 7: Module 3 - State-space Controller

Using place(Ai',Bi',Pc)' with the values of Pc and:

Ai =

240 0 0:685
0 �6:44 �19:8
0 1 0

35 and Bi =

2401
0

35 (7.36)

with reference to equation 7.19, the closed-loop gain matrix F is:

F = �
�
Fi F0

�
= �

�
1518:2 19:6 254:2

�
(7.37)

Likewise, the observer feedback K has been computed with place(A,B,Po):

K = �

�
k1
k2

�
= �

�
2391:2
95:7

�
(7.38)

7.4.1 Computing the Compensator Matrices

Inserting the calculated values of A, B, C, F an K in the state-space descrip-
tion of the compensator given in equations 7.23 gives:24 _xi

_̂x1
_̂x2

35 =

24 0 0 0
1518:2 �26 �1912

0 1 �65:56

3524xix̂1
x̂2

35+

24 1 �1
2391:2 0
95:7 0

35� y
yr

�

u =
�
�1518:2 �19:6 �254:2

� 24xix̂1
x̂2

35 (7.39)

which is a system with two inputs y and yr and one output u.

With the use of the command c2d in conjunction with tf as mentioned ear-
lier, the two discrete-time tranfer functions describing the compensator can be
found:

U1(z)

Yr(z)
=

25:25z�1 � 20:7z�2 + 5:781z�3

1� 1:569z�1 + 0:7294z�2 � 0:1602z�3
(7.40)

and
U2(z)

Y (z)
=

�615:9z�1 + 1083z�2 � 477:6z�3

1� 1:569z�1 + 0:7294z�2 � 0:1602z�3
(7.41)

These have been used to �nd the closed-loop poles, mentioned before.

Taking the inverse z-transform of either of the two tranfer functions and writing
these on recursive form gives the di�erence equations:

u1[n] = 25:25yr[n � 1]� 20:7yr[n� 2] + 5:781yr[n� 3] + 1:569u1[n � 1]

� 0:7294u1[n � 2] + 0:1602u1[n � 3]

(7.42)

7.5 Simulation of the State-space Controller 65

and

u2[n] = �615:9y[n � 1] + 1083y[n � 2]� 477:6y[n � 3] + 1:569u2[n � 1]

� 0:7294u2[n � 2] + 0:1602u2[n � 3]

(7.43)

The total control signal is obtained by adding together the two control signals
given by equations 7.42 and 7.43 such that u[n] = u1[n] + u2[n].

7.5 Simulation of the State-space Controller

To verify the design of the state-space compensator, a number of simulations
have been made using MatlabTM and SimulinkTM. The details of these
simulations are given in appendix A.2 and the outline of the tests are listed
below:

� Step response without any disturbances.

� The �uctuations of the control signal, i.e. the control e�ort.

� Step response with sine disturbances on u and the feedback path respec-
tively.

� Step response with random signals on u and feedback path respectively.

� Response to a ramp input.

All step responses have been made with a step reference input from 0 to 0.0346,
resulting in a step from 0 to 1 V on the control signal u. The frequencies of
the sine signal are 5 Hz, 50 Hz and 1 kHz as in the simulation of the PID
controller.

The in�uence of the di�erent noise signals on the output of the closed-loop
system are summarized in table 7.1.

It can be seen that noise applied to the feedback path can result in great
disturbances on the ouput, whereas noise on the control signal has little or
no in�uence. This sensitivity could be reduced by selecting slower closed-loop
poles which, on the other hand, would result in a slower compensator.

The ramp input is a ramp with a slope of 0.0346 so that the input reaches its
maximum (0.346) after 10 seconds in accordance to the limits of the setpoint
changer (see chapter 5 on page 34). It produces a tracking error of maximum
0.009 when the setpoint changer changes a setpoint with the maximum slope
of 0.0346.

66 Chapter 7: Module 3 - State-space Controller

Noise Signal Feedback Control Signal
5 Hz sine Visible� Visible�

50 Hz sine Visible� None
1 kHz sine Visible� None

Random (signal

100;000
) Visible� -

Random (signal
10;000

) Dominant� -

Random (signal � 2) - None�

Random (signal � 20) - Visible�

Table 7.1: The e�ects of noise on the output signal. An (�) indicates that
the control signal is varying dramaticly.

For a step of 1 V on the control signal, the peak control e�ort is about 2.5 V.
When the controller regulates in the vicinity of it upper limit (10 V), this
means that the control signal will saturate, resulting in a slower response (a
rise time of approximately 0.49 s).

7.6 Test of the State-space Controller

The state-space controller has been tested by implementing the di�erence equa-
tions 7.42 and 7.43 in a control software that will be described in chapter 10
on page 77. The tests are described in appendix F.

As with the test of the two PID controllers, the state-space controller did
not behave as expected when installed in the tunnel system. It required some
coarse adjustment of the poles to make the controller function just tolerably.

The closed-loop poles after the adjustment are placed in -3, -4 and -4.1 and
the observer poles in -10 and -11 which obviously results in a slower system.

This drowsing of the system was chosen to prevent the VLT from going into
current saturation as a consequence of the wrong model due to the falsely
calibrated sensors.

The rise time of the measured system is approximately 1 s, the overshoot is
30% and the steady state error does not come within the �1% limit at all.

Even after the detuning the compensator showed a slightly oscillating be-
haviour.

7.7 Conclusion

The simulated closed-loop system, consisting of a state-space compensator and
the wind tunnel model, has the following properties:

7.7 Conclusion 67

System tr [s] ts [s] Mp [%] !b [
rad
s
]� ess step ess;max ramp

Gu(z) 0.308 0.784 0 6.24 0 0.0091
Gd(z) 0.302 0.575 0.5 6.21 0 0.0091

Table 7.2: The features of the simulated closed-loop system consisting of
the state-space compensator and wind tunnel model. �) The
bandwidth has been measured for the continuous-time system in
ltiview.

Gu(z) and Gd(z) are the closed-loop step responses with the step-up and step-
down transfer functions of the tunnel respectively. They are shown on �gure 7.7
where Gu(z) is the solid line and Gd(z) is the dotted line.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

A
m

pl
itu

de

Time [sec]

Figure 7.7: Response to a step-up (solid line) and a step-down signal (dotted
line), respectively.

From table 7.2 it can be seen that the simulated state-space compensator meets
most of the requirements of the demand speci�cation, namely:

� Resulting closed-loop bandwith !b < 15 rad
s
.

� Allowable overshoot Mp = �1%.

� �1% state error for a step input.

The requirement of a rise time tr of approximately 0.2 s has not been met. A
longer rise time was accepted to have a more consistent response all over the
control signal range (0�10 V). Otherwise the rise time for setpoints close to
the lower and upper limit of the signal range would vary quite much.

The measurements in the tunnel show somewhat other results, due to model
deviations. The poles of the state-space compensator has been detuned to

68 Chapter 7: Module 3 - State-space Controller

attain acceptable results. However, the undesired oscillating behaviour makes
it a rather unsuitable solution for the �nal design.

With a better model of the wind tunnel system, including motor/fan and VLT,
it would be posible to make a better state-space compensator.

Chapter 8

Module 4 - Choice of
Controller

Through chapters 6 and 7 three di�erent controllers have been designed for the
wind tunnel. The purpose of this chapter is to compare the three controllers
and pick the best suited controller for the wind tunnel. The controllers will be
compared with regard to:

� Speed.

� Control e�ort.

� Overshoot.

� Noise rejection.

� Steady state / tracking error.

The comparison will be done in three ways: by regarding the key features from
the simulations, by regarding the key features from the measurements of the
controllers implemented in the tunnel system and with the use of a formalized
cost function (LQ).

8.1 Comparing the Simulated Features

The simulation data used for the comparison are shown in table 8.1.

Controller Plant tr [s] ts [s] !b [
rad
s
] ess;max (ramp) control e�ort

PIDno �lter

Gu(z) 0.4 2.6 5.7 0.0135 +20%, -15%
Gd(z) 0.5 1.8 4.4 0.0129 -

PID�lter

Gu(z) 0.7 4.9 3.5 0.0330 +0%, -15%
Gd(z) 0.8 4.0 2.8 0.0325 -

State-sp.
Gu(z) 0.308 0.784 6.24 0.0091 150%
Gd(z) 0.302 0.575 6.21 0.0091 -

Table 8.1: The simulated comparison data for the three controllers.

69

70 Chapter 8: Module 4 - Choice of Controller

From the table it can be seen that the state-space compensator is the faster,
but at the cost of a big control e�ort.

The PID controller with �lter is obviously the slowest with a settling time of
4�5 s. This, on the other hand, results in less noise sensitivity and a smaller
control e�ort and thus a less aggressive controller.

As the only one, the state-space compensator has an undesired overshoot when
applied to the step-down function. However, this is only 0.5% which is within
the speci�ed limits of the demand speci�cation.

All three controllers have a non-zero tracking error. This, however, is assumed
not to be a big problem since the steepest possible ramp (resulting in the
largest tracking error) only occurs when the setpoint changer is active. After
that, the respective controllers will have to correct the (tracking) error listed
in the table, which is relatively small.

When the controllers are set to produce a ramp output, the error will be smaller
than the value found in the table. If the controller is set to change the ouput
value from 0 to maximum over 5 minutes (300 s) e.g., the ramp error will be
only 10

300
of the table value.

8.2 Comparison Using a Cost Function

LQ optimization is a way to choose the optimum compromise between per-
formance and control e�ort of a controlled system. That is to minimize the
performance index J given by:

J =
1

N

NX
n=0

�
(y[n] � yref [n])

2 + � (u[n] � u[n � 1])2
�

(8.1)

The used symbols is explained in 8.2.

Symbol Explanation
N The number of samples in a measured or simulated step response
y[n] The actual magnitude of the nth output sample
yref [n] The desired magnitude of the nth output sample
u[n] The actual magnitude of the nth control signal sample
� weighting factor between control e�ort and output error.

Table 8.2: The used symbols in the LQ optimization.

The performance index gives a quantitative measure of the mean-square value
of the �uctuations of u and y and a smaller value of J yields a �better� system.

8.2 Comparison Using a Cost Function 71

8.2.1 Performance Index of the Simulated Controllers

Two performance indeces have been calculated for each of the three simulated
controllers: one with � = 1 and one with � = 0.1. In the �rst case the control
e�ort and output error have been weighted equally whereas, in the latter case,
the output error is considered more important than the control e�ort.

The computations of J have been made in MatlabTM and SimulinkTM and
the results are listed in table 8.3. In the �rst case where � is 1, the PID

Controller Response J � 104 (� = 1) J � 105 (� = 0.1)

PIDno �lter

Gu(z) 2.4937 4.9037
Gd(z) 2.5264 5.2839

PID�lter

Gu(z) 0.7899 7.4795
Gd(z) 0.8616 8.1710

State-sp.
Gu(z) 4.7759 6.6819
Gd(z) 4.1103 6.1293

Table 8.3: Performance indeces for the three simulated controllers.

controller with �lter shows best results. When, in the case where � is 0.1,
the output accuracy is considered most important, the PID controller without
�lter shows the best performance.

8.2.2 Performance Index of the Measured Controllers

As with the simulated controllers, two performance indeces have been calcu-
lated for each of the three measured closed-loop controllers: one with � = 1
and one with � = 0.1 and the results are shown in table 8.4.

Controller Plant J (� = 1) J (� = 0.1)

PIDno �lter

Step 0.1925 0.1905
Ramp 78.348 78.340

PID�lter

Step 0.2039 0.2039
Ramp 81.666 81.665

State-sp.
Step 0.1558 0.1550
Ramp 69.823 69.826

Table 8.4: Performance indeces for the three measured closed-loop con-
trollers. The ramp and step inputs include both a positive and
a negative ramp and step respectivly.

The numbers for the PID without �lter and the state-space controller apply to
the adjusted controllers. From this it can be seen that the state-space controller
gives best results both with � = 1 and � = 0:1.

72 Chapter 8: Module 4 - Choice of Controller

8.3 Choice of Controller

To make the choice of a controller the main consideration is how the controllers
perform with the tunnel. The key �gures from tables 8.1 through 8.4 are used
as guidelines.

From the test of the controllers (see appendix F) it can be seen that the PID
controller witout �lter and the state-space controller needed to be adjusted to
work satisfactory. After the adjustments the PID without �lter has a tr = 1:8 s,
the PID with �lter has a tr = 4 s and the state-space has a tr = 1 s. This
adjustments resulted in the state-space controller having the best performance
index of the three controllers.

Comparing �gures F.2 to F.7 it can be seen that the state-space controller and
PID controller without �lter produces an overshoot a step input as well as a
ramp input. The overshoot with a step input is approximately 30% and 20%
for the state-space and PID respectivly. The PID with a �lter does not produce
this overshoot, but it makes a tall spike in the output at the end of the ramp.
This spike is assumed to be the consequence of the large tracking error that
the controller produces. This is visible on the graphs and it also results in an
error message on the VLT, that has to be manually reset. This is the main
reason that the PID with �lter is not implemented.

The chosen controller is therefore the PID without �lter. The reason is that
this controller gives the best performance in the tunnel.

Chapter 9

Module 5 - Hardware
Configuration

This module describes the connections between the PC, the transducers and
the VLT. All practical initiatives to be done to make everything work together
is described brie�y. At �rst the transducer couplings are descibed, afterwards
the VLT setup and �nally the connections to the I/O-card.

9.1 The Pressure Transducers

The transducers used to measure the air velocity inside the tunnel are described
in the analysis in section 2.6. Nine pitot tubes at the end of the test section
are used to measure the pressure inside the tunnel. The nine pitot tubes are
mounted as shown in �gure 9.1. The horizontal tubes are connected to each
other so that each pair of transducers measures the mean pressure on the three
interconnected tubes.

654321

End of test section

Figure 9.1: Connection of transducers and pitot tubes at the end of the test
section.

73

74 Chapter 9: Module 5 - Hardware Configuration

As shown in �gure 9.1 six transducers are coupled in pairs to measure the
pressure in the wind tunnel. One of the two is calibrated to measure pressure
at the air velocities from 0 m

s
to � 14 m

s
and the other is calibrated to measure

pressure at air velocities up to � 25 m
s
. A solenoid valve removes the pressure

from the low pressure transducers when the pressure exceeds 14 m
s
. The valve

is controlled by a digital output from the I/O-card. The digital output comply
with the TTL standard, which means the logical high output VOH is between
2.7 and 5 V. Since the switch needs 12 V to turn on a, non-inverting ampli�er
curcuit has been designed to amplify the output.

A diagram for the control of the valves is shown in �gure 9.2

Op−Amp2
Digital out pin 1

−

+

Digital out pin 9

Ro2
Ro1

230V

To the valves

SwitchGND

Figure 9.2: The control of the valves.

Table 9.1 shows the measuring range of each transducer. Transducer 1, 3 and
5 measure the low pressures and transducer 2, 4 and 6 measure the high pres-
sures.

The sample software converts the measured pressure to an air velocity with
the use of formula 9.1:

v =

r
2 � pd
�air

(9.1)

where the air density �air � 1:20 kg
m3 at 20ÆC. The calibrated maximum air

velocity for each transducer is shown in table 9.1.

Table 9.1 shows that the maximum usable air velocity measurement is 24:8 m
s
.

It was not possible to install pressure transducers that could measure the range
from 0 m

s
to 30 m

s
.

The outputs from the transducers are their supply current. The range is 4�
20 mA linearly, which means that they use 4 mA when no air velocity is mea-

9.2 The Temperature Sensor 75

Transducer number Max. pressure Max. air velocity
1 118.3 Pa 14.0 m

s

2 369.7 Pa 24.8 m
s

3 121.6 Pa 14.2 m
s

4 490.3 Pa 28.6 m
s

5 176.5 Pa 17.1 m
s

6 630.6 Pa 32.4 m
s

Table 9.1: Transducer range and corresponding maximum air velocity.

sured and 20 mA when the maximum air velocity at each transducer is mea-
sured.

The I/O card used to sample the output is set to the maximum range from 0 V
to 10 V, which is chosen to minimize the noise in�uence. A series resistance is
placed on the transducer supply and the voltage over the resistance is sampled.

The resistance must be

R =
U

I
) R =

10 V

20 mA
= 500
 (9.2)

To make sure the resistance is 500
 a potentimeter of 1 k
 is placed in parallel
with af resistance of 1 k
 to calibrate the resistance to exactly 500
.

According to the data sheet the supply voltage for each transducer must be
within a range of 20 V to 55 V for a series resistance of 500
 according to the
data sheet. A supply voltage of 30 V is chosen.

9.2 The Temperature Sensor

As mentioned in the analysis in section 2.6.2 the temperature sensor is a PT100
sensor. It has a resistance of 100
 at 0 ÆC and 120
 at 50 ÆC. To measure the
small changes in resistance, a Wheatstone bridge and a di�erential ampli�er
is used. This is shown in �gure 9.3. This ampli�er must be placed near the
sensor in order to make it less sensitive to electrical noise.

9.3 The VLT

The frequency converter is a Danfoss 6000 VLT. It must be set up in accordance
with the equipment connected to it in order to control the air velocity inside
the wind tunnel. The setup is shown in appendix E.

With this setup the frequency of the VLT can be controlled with an analogue
input voltage between 0 V and 10 V on the input pins 53 and 55. The VLT can

76 Chapter 9: Module 5 - Hardware Configuration

+
−

+
−

+
−

Rt4

Analog

Input pin 1

PT100

Rt2

Rt3

Rt1

Analog output pin 30 (+12 V)

GND

Op−Amp 4

Rt5

Op−Amp 3

Op−Amp 5

Rt7

Rt6

Figure 9.3: The temperature sensor curcuit.

be turned on and o� according to the input voltage on pins 18 and 20. When
the voltage exceed 10 V the VLT is turned on and below 5 V it is turned o�.
An ampli�er like �gure 9.2 is used to amplify the digital control signal.

9.4 The PC

The communication between the PC and the VLT and the sensors takes place
through the I/O card. The I/O card is a NuDAQ PCI-9112 with 16 digital
inputs and outputs, 8 di�erential analogue inputs and two analogue outputs.
The temperature sensor is connected to analogue input 0 and the pressure
transducers to input 1�6. The VLT control voltage is connected to the digital
output 1 via a bu�er and the VLT on/o� signal is connected to the analogue
output 0 through an ampli�er.

A diagram for sensor 1 is shown in �gure 9.4.

+
−To A/D converter

Sensor 1

R1R7

+

−

+−

30 V DC

Figure 9.4: Diagram for sensor 1.

The complete diagram for the connection unit is shown in appendix I.

Chapter 10

Module 6 - Software

This chapter considers the design and implementation of the graphical user
interface (GUI) and the controller algorithm. Through the GUI the application
must have the following functions:

� A �eld to change the air velocity setpoint and a button to submit the
air velocity.

� Fields to make the air velocity follow a user preset ramp and a button
to submit the ramp.

� A menu where the data from a test series can be saved to a �le.

� A menu where the user manual for the program can be accessed.

� A button to stop the system.

Furthermore, the GUI must contain the following information about the wind
tunnel:

� The actual air velocity in the test section of the wind tunnel.

� The actual temperature in the test section of the wind tunnel.

� Ramp status. This option indicates how far the system is with a given
ramp.

� An indicator to show when the air velocity has reached its desired value.

In order to handle the real time demands from the controller algorithm, the
application must be separated into two processes: one handling the GUI and
one controlling the air velocity in the wind tunnel. This is a consequence of the
use of Windows r
 2000 as the operating system and hereby the use of Win32
application programming interface (API). A description of the Win32 API can
be found in appendix B.

Through a number of tests it has been concluded that the better way to es-
tablish a communication between the two processes is through a pipe. This

77

78 Chapter 10: Module 6 - Software

conclusion is made from the fact that the Windowsr
 message system is too
slow when messages are sent with 50 Hz. For more information about the
Windows r
 message system and pipes refer to appendix B.

In order to handle this communication a protocol is de�ned.

10.1 Protocol

This protocol is de�ned so that the parameters shown in table 10.1 can be sent
between the two processes.

Package identi�er Byte no. Content

ID_SETPOINT 0 ID_SETPOINT

1 Low byte of Setpoint_New times 10

2 high byte of Setpoint_New times 10

ID_RAMP 0 ID_RAMP

1 Sign of RampIncremental

2 Low byte of RampIncremental times 108

3 Mid byte of RampIncremental times 108

4 High byte of RampIncremental times 108

5 Low byte of RampFrom times 10

6 High byte of RampFrom times 10

7 Low byte of RampTo times 10

8 High byte of RampTo times 10

ID_DATA_FROM_PROCESS 0 ID_DATA_FROM_PROCESS

1 1. char of ActualAirFlow

2 2. char of ActualAirFlow

3 3. char of ActualAirFlow

4 4. char of ActualAirFlow

5 1. char of ActualTemperature

6 2. char of ActualTemperature

7 3. char of ActualTemperature

8 4. char of ActualTemperature

9 1. char of RampStatus

10 2. char of RampStatus

11 3. char of RampStatus

12 4. char of RampStatus

13 5. char of RampStatus

ID_CLOSE_PROCESS 0 ID_CLOSE_PROCESS

Table 10.1: The protocol de�ned to handle the communication between the
GUI process and the controller process.

The protocol is de�ned this way, because all the data is handled in �oats
and since bit operations on �oats are not possible with the used Borland 5.5
compiler.

The setpoint was given to have a maximum of one decimal. Therefore it is
chosen to multiply it with 10, convert it into an integer, split it into two bytes
and send these.

10.2 GUI Design 79

The same goes for the ramp. The ramp From and To options should have a
maximum of one decimal. Therefore these are handled like the setpoint. The
ramp Time option can consist of as many digits as needed, as long as the slope
of the ramp is within 0.0000055555556 m

s�sample
to 0.06 m

s�sample
. This ramp is

given to have a minimum slope so that a ramp from 0 m
s
to 24 m

s
will take 24

hours. The steepest slope is given in the setpoint changer module.

When the actual air velocity, temperature and ramp status is sent from the
controller process, it is chosen to convert these into characters before they are
sent. This is done so that no further conversion is needed in the GUI process
before these values can be shown on the screen.

10.2 GUI Design

The idea of the GUI is to give a user friendly interface to the wind tunnel. The
purpose is to implement the user facilities given in the demand speci�cation
(and those pointed out in the beginning of this chapter).

In order to handle the user inputs on the screen and communicate with the con-
troller process simultaneously, the GUI process is built up around two threads;
a main thread that handles the users input and a bu�er thread that handles
the communication with the controller process. This con�guration is shown i
�gure 10.1.

Communication
through Windows
messages

Communication
through a named
pipe

Buffer threadMain thread

Controller processGUI process

Main thread

Figure 10.1: The organization of the GUI process and how it interacts with the
controller process.

The communication between the bu�er thread and the controller process is
time critical, because the bu�er thread has to work as a temporary bu�er that
saves the data recieved from controller process. The communication between
the main thread and the bu�er tread is not time critical, since the bu�er thread
has been chosen only to send information to the GUI process every 2 seconds.

10.2.1 Main Thread

First step is to create the main thread. A �ow chart for the main thread is
shown in �gure 10.2.

The �rst thing the main thread has to do is to make an initialization. The

80 Chapter 10: Module 6 - Software

and dispatch message

Yes

No

START

with ID to Callback

Initialization

Action
preformed in

window?

Get ID form action

function

Figure 10.2: Flow Chart of the main thread.

things done in this initialization are listed below:

Creation of main program window: The empty main window is drawn.
The only options set up for the main window are: the menu bar, how the
icon for the .exe �le looks and how the mouse cursor looks in the window.
The only reason that the main window is created in the initialization
phase (in the main function) is that it is the only way to initialize a
Windows r
 message queue. Windows r
 message queues are necessary
to make a graphical Windows r
 application work.

Creation of the bu�er thread: The bu�er thread that has to communicate
with the controller process is created.

Creation of the controller process: The controller process is started with
the highest Windowsr
 2000 priority (REAL_TIME_PRIORITY_CLASS).

After the initialization the main thread goes into a loop that checks if an action
has occurred in the window and dispatches the message associated with the
action recieved. The message is recieved by the callback loop and the function
linked to the message is executed. For more information about the callback
loop see appendix B.

The next step is to create the graphical outline according to the demand spec-
i�cation. This is done by adding buttons, listboxes and editboxes to the main
window by using the Win32 API function CreateWindow (see appendix B).
The drawing of the window is carried out, when the Windows r
 kernel sends
the WM_CREATE message. This message is send from the kernel just after the
message queue has been created. The result when the GUI has been drawn
can be seen in �gure 10.3.

Afterwards, functions to handle the editboxes, listboxes, buttons and the menu

10.2 GUI Design 81

Figure 10.3: The outline of the GUI.

bar is drawn on the screen are assigned. From the demand speci�cation the
functionality of the GUI was given and is shown below for convenience:

The Air Velocity Submit button: Sends the desired air velocity written in
the air velocity editbox to the bu�er thread which passes it to the con-
troller process. Before the desired air velocity is sent, a function checks
if the data is valid. Valid data has a range of 0 to 24 m

s
and can consist

of decimal numbers. If an invalid character is written an error message
appears.

The ramp Submit button: Checks whether the values in the three editboxes
From, To and Time are valid. The valid values for the From and To ed-
itboxes are the same as for the test section air velocity. For the Time

editbox the Submit button only tests if a valid type is entered, not the
range of the number. Finally, the slope of the ramp is tested. If invalid
data is detected messages will appear on the screen. A maximum of
1440 min can be entered which is approximately 24 hours.

The STOP button: Terminates the current action by sending an air velocity
value of 0 m

s
to the controller process through the bu�er thread.

82 Chapter 10: Module 6 - Software

The menubar:

File: Has two submenus: save and exit. When save is selected a di-
alogbox appears and a desired location for saving the temporary log
data can be selected. The exit sub menu terminates the application
by sending a WM_CLOSE command (see appendix B).

Help: When selected, a dialogbox with the help screen appears.

The last thing needed is the indicator for the wind tunnel. This is made by
switching two bitmap pictures (a red and a green) between transparent and
visible.

The drawing of the bitmaps is done whenever a WM_PAINTmessage is sent. This
message is sent from the kernel whenever the window is resized or moved.

To determine which of the two pictures to be visible, and in order to keep
the use of Windows r
 messages to a minimum, the bu�er thread compares
the actual air velocity with the setpoint and set a variable (ready) according
to the situation found. This ready variable is send to the main thread every
2 s in a WM_PAINT message with the ready variable in the last of the three
parameters in a Windows r
 message. The parameter is 2 if the tunnel is ready
and 1 if the tunnel is not ready.

10.2.2 Bu�er Thread

According to the demand speci�cation a log �le with the collected data should
be made, and saved in a desired location. A temporary collection of data is
made in the thread as it receives data from the controller process. The data
is saved in an array, and when the data of 100 cycles is received a pointer to
the data is sent to the main thread. This is done to keep the data �ow and the
disk access down to a minimum. A �ow chart of the bu�er thread can been
seen on �gure 10.4.

The bu�er thread also checks if the tunnel is ready by comparing the actual
air velocity received from the controller process with the desired setpoint from
the user. In the demand speci�cation it was given that an error of �1 m

s
of

the actual air velocity is acceptable. If the di�erence between the actual air
velocity and the desired setpoint is within this range the variable ready is set
to 2 and otherwise to 1.

Before the ready variable is sent, a pointer to the actual air velocity, tempera-
ture and ramp status characters (received from the controller process) is sent to
the main thread in aWindow message with a de�ned identi�er ID_UPDATE_GUI.

10.3 Controller Process Design 83

START

New
message in pipe?

Initialization

Save recieved data in

Setpoint)j?

0.01>j1-

(actualAirFlow/

Send pointer

Main thread

Yes

No

to Update
GUI data to

ready = 1

Send ready
variable to
Main Thread

counter = 0

the tunnel is
(Indicates that

ready)

ready = 2

counter++
Yes

No

not ready)
the tunnel isSaveData[counter]
(Indicates that

Main thread
SaveData to
Send pointer

100?
counter ==

No

Yes

Figure 10.4: Flow Chart of the bu�er thread.

10.3 Controller Process Design

The purpose of the controller process is to control the air velocity in the wind
tunnel. The process has to control the sample rate, determine the actual air
velocity and temperature in the wind tunnel, calculate the next control signal
and send data to and receive data from the GUI process. In �gure 10.5 a �ow
chart of the controller process is shown.

card
signal to I/O
Write control Receive data from

GUI process

Calculate the
next control
signal

Calculate the
next reference

Send data to
GUI process

Yes

No

START

Initialization

Time to sample? Actual airflow
Determine the

and temperature

Figure 10.5: The overall loop of the controller process.

In the following sections each step of the �ow chart is explained.

84 Chapter 10: Module 6 - Software

10.3.1 Initialization

The initialization phase does the following:

Initialize the data acquisition card: The data acquisition card needs to
be initialized before it can be used. This is done with the RegisterCard
function written in the device driver for the I/O card [cdrom].

Connect to the pipe: In order to communicate with the GUI process through
a pipe, the controller process needs to connect to the pipe. For the con-
nection to work, the controller has to connect with the same attributes
as when the pipe is created in the GUI process, that is: byte oriented
messages, same size of in- and output bu�ers (5000 bytes each) and read
and write access attributes.

Create a timer queue: In order to have a �xed sample rate a timer is needed.
In the Windows r
 2000 kernel, there is only one usable way to create
this timer; by using the CreateTimerQueueTimer. This function will then
generate a software interrupt and call a speci�c callback function with a
speci�ed frequency. The CreateTimerQueueTimer function can generate
interrupts up to 100 Hz which is adequate for this purpose since only a
sample frequency of 50 Hz is needed.

When the initialization is completed the main loop can begin: Whenever the
CreateTimerQueueTimer generates an interrupt and calls the callback func-
tion, the tasks described in the following sections will be run.

10.3.2 Determine the Actual Air Velocity and Temperature

In order to determine the actual air velocity and temperature this function
needs to read data from the data acquisition card. This is done by reading the
seven A/D converter registers where the readings from the six pressure sensors
and the temperature sensor are stored. A reading of the pressure is a voltage
proportional with the pressure in mmH2O.

From the six pressure values the function has to determine which three to use
and calculate the mean pressure from the selected sensors. The six sensors
have di�erent pressure spans, where three of the sensors are calibrated to
measure low pressures with high accuracy, and three sensors cover the entire
area. When shifting between the sensors a hysteresis area is made to prevent
it from disturbing the measurements, when operating in the shifting area.

The pressures are measured in mmH2O and are converted to Pa with the
following equation:

PMean = 9; 80665 � PmmH2O (10.1)

10.3 Controller Process Design 85

PMean is then converted to the actual air velocity with the following equation:

vAir =

s
2 � PMean

�Air
(10.2)

where �Air is the air density at the given temperature.

The voltage read for the temperature is converted to the actual temperature
and returned. The conversion is done with the equation:

TAir = 5 � VRead (10.3)

10.3.3 Calculate the next Reference

Before the next control signal can be calculated the reference input has to be
calculated. For the determination of the next reference input the following two
cases can occur:

Use of reference from the setpoint changer: The setpoint changer cal-
culates the reference from the two newest setpoints requested from the
user. If there is no di�erence between the two setpoints it will set the
reference to the newest setpoint, or else it will increase the reference
according to the fastest preset ramp.

Use of reference from the user de�ned ramp: If the user has requested
a ramp, the fastest ramp is followed to the start point of the user de�ned
ramp. Afterwards the reference will increase (or decrease) to follow the
user de�ned ramp to the end point.

Hereby the values needed for the control signal determination algorithm are
obtained.

10.3.4 Calculate the Next Control Signal

In chapter 8 it was chosen to use a PID controller. And the following di�erence
equation was obtained:

u[n] =

e[n](K +KTd) + e[n� 1]

�
K

�
Ts

Ti
� 1� 2Td

��
+ e[n � 2]KTd + u[n� 1]

(10.4)

The �ow chart for the control algorithm is shown in �gure 10.6. The constant
MAX_OUTPUT is de�ned as 10 which is the maximum voltage output for
the data acquisition card.

86 Chapter 10: Module 6 - Software

u[n] =

MAX OUTPUT
MAX OUTPUT

START

STOP

Calculate e[n]

Calculate u[n]

u[n] >

u[n] < 0? u[n] = 0

Save values

No

Yes

Yes

No

Figure 10.6: Flow chart for the control algorithm.

10.3 Controller Process Design 87

When the next control signal has been determined it is sent to the data acqui-
sition card by using the function AO_VWriteChannel function written in the
device driver for the data acquisition card. This function needs a parameter
for the output channel number where the voltage has to be written and the
voltage to be written.

When the output has been written, the rest of the time, before next sample
time, is used to send data to and receive data from the GUI process.

10.3.5 Send Data to the GUI Process

In the description of the protocol in section 10.1 the data package to be sent
to the GUI process is de�ned.

Before the data package can be send, the actual air velocity, temperature and
ramp status needs to be converted to characters as the protocol describes.
When this conversion has been done, an array of 14 bytes is written to the
pipe.

10.3.6 Receive Data from the GUI Process

When the data is send, the controller has to receive data from the GUI process.
The data packages to be received from the GUI process are described in the
protocol in section 10.1.

The receive data algorithm is shown in the �ow chart of �gure 10.7.

ID_CLOSE_
PROCESS

ID =

START

Terminate process

Number of bytes
read > 0?

YesYesYes

ID_RAMP?

Decode package

STOP

ID =

and update setpoint

Decode package

and update ramp

Yes

No

ID_SETPOINT?

ID =No No No

Read Pipe

Figure 10.7: The algorithm to receive data from the GUI process.

In the �ow chart it can be seen that the receive data algorithm simply reads

88 Chapter 10: Module 6 - Software

from the pipe, and determines the identi�er of the package received and acts
in accordance to the indenti�er.

When the control loop is �nished the controller process goes into a wait loop
until the CreateTimerQueueTimer generates a new interrupt.

10.4 Software Test

In the accept test speci�cation the following demands were given to the GUI
(see section 3.12):

Demand 1: All text in the GUI must be in English.

Demand 2: All buttons and text �elds must be accessible with both mouse
and keyboard and functional.

Demand 3: The numbers typed in the text �elds must be of the format xx.x,
where the x'es are the numbers from 0 to 9 and the �.� is a decimal
delimiter. The numbers after the �.� are optional. The range of input air
velocity is from 0 to 30 m

s
. If an invalid input is given, the GUI must

display an error message.

Demand 4: The GUI must give the user an indication on whether the wind
tunnel is �ready� or �not ready� for measurements. This must be done by
displaying a red or green indicator respectively.

Demand 5: The software must produce an ASCII-text �le in .csv format,
containing logged information about the air velocity and temperature
from the last invocation of the �Submit� button. The log �le will be
stored on the harddisk of the PC. A MatlabTM program PelecanPlot

can be used to load the data from the .csv �le and to make a plot of the
measurements.

For each of these demands a test is de�ned. In the following each of these tests
are carried out to verify that each demand is ful�lled by the software.

10.4.1 Test 1

To this demand the following test is speci�ed:

Test 1: Start up the GUI and navigate through all the menus, buttons and
pop up windows, verifying that they are in English.

By running this test it can be veri�ed that the text in the GUI is in English
by reading the text on the screen.

10.4 Software Test 89

10.4.2 Test 2

For this demand the following test is speci�ed:

Test 2: Start up the GUI and navigate through the screen with only the
mouse. Ensure that all areas can be reached. Repeat the test only using
the keyboard. Ensure that all areas can be reached.

The keyboard and mouse was used to navigate through the menus, buttons
and pop-up windows and it was veri�ed that only the mouse can be used to
handle all the options.

10.4.3 Test 3

For this demand the following test is speci�ed:

Test 3: Start the GUI. Move to a text �eld and type a legal number and see
that the software accepts the value. Type a value that is out of range and
see that the system gives an error and rejects the input. Type in strings
that contain illegal symbols or are of an invalid format, and see that the
system displays an error message and rejects the input.

The text �eld for setting a user de�ned air velocity was selected and four
di�erent legal air velocity was inserted in the text �eld: one with the form x,
one with the form xx, one with the form x.x, and last one with the form xx.x.
These air velocity values was all accepted by the GUI.

The maximal air velocity that can be entered is in the demand spec�ed to
30 m

s
but because of limitations in the pressure transducers the maximal air

velocity that can be entered i the GUI is 24 m
s
.

Afterwards four illegal air velocity values were inserted: a character, numbers
of the form x.xx, a number higher than 24 m

s
and last nothing was inserted.

For each of these illegal inputs an appropriate error message was displayed.

This test was then repeated for the ramp From and ramp To text �elds. The
same results were veri�ed with these two text �elds.

Then the ramp Time text �eld was tested. First, legal values were typed in
the test �eld: integers in the range of 0 to 1440, decimal numbers in the range
of 0 to 1440 with a maximum of three decimals. 1440 min equals the demand
of 24 hours. All these values were accepted, if it was ensured that the ramp
slope was within the given range. Otherwise an error message was displayed.
Finally, illegal values were inserted in the text �eld. When the Submit button
was pressed, appropriate error messages appeared on the screen.

90 Chapter 10: Module 6 - Software

10.4.4 Test 4

For this demand the following test is speci�ed:

Test 4: Start the GUI and type in a desired air velocity in the appropriate
text �eld. Submit the value and verify that the air velocity in the wind
tunnel starts building up. As the desired air velocity is submitted the
indication �not ready� will be shown and when the air velocity reaches
the desired value the indication will switch to �ready�.

An air velocity was inserted in the text �eld for the user de�ned air velocity
and the Submit button was pressed. By reading the text �eld with the actual
air velocity in the wind tunnel it could be veri�ed that the red indicator was
active while the air velocity in the tunnel was out of the range of an acceptable
air velocity; that is outside a range of �1 % of the submitted air velocity. When
the air velocity came within this range the green indicator became active.

10.4.5 Test 5

For this demand the following test is speci�ed:

Test 5: Start the GUI and submit a legal air velocity in the text �eld. Let
the air velocity build up and press the stop button after an appropriate
time. Go to the �le menu and choose the save option. Enter a �le name
and a location for the �le and press �save�. Open aMatlabTM command
window and choose the �import� option in the �le menu. Find the newly
saved �le from the wind tunnel control program and ensure that it has
the �.csv� extension. Load it into MatlabTM with PelecanPlot and
see that the output from PelecanPlot contains information of the time
span, air velocity and temperature of the just performed test in three
separate vectors.

The GUI was started and an air velocity was inserted in the text �eld for
the user de�ned air velocity and the Submit button was pressed. After the
submitted air velocity was reached the STOP button was pressed, and the air
velocity in the wind tunnel graduately changed to 0 m

s
.

The �le menu save was selected and the logged data was saved to the disk.
A MatlabTM command window was opened and the data was loaded with
the PelecanPlot function and the logged data where drawn on the screen. By
inspection of the logged data, it could be veri�ed that the structure of the �le
was correct.

10.5 Conclusion 91

10.5 Conclusion

The purpose of the software is to give a user friendly interface to the wind
tunnel control. It is written to give the user a possible way to interact with the
wind tunnel: see the actual air velocity and temperature in the wind tunnel,
set the air velocity, make the air velocity follow a de�ned ramp and save logged
data to a .csv �le.

As veri�ed in the test, the software has these possibilities except that the GUI
can not be controlled by the keyboard alone.

Chapter 11

Accept Test

In the accept test speci�cation in section 3.12 a set of demands was given to
the system. The �rst 5 demands are associated with the GUI and have been
tested in section 10.4. The remaining demands are related to the entire system
and are repeated here:

11.1 Demands for the Control Algorithm

Demand 6: The sample frequency must ensure that the shortest rise/fall time
is sampled at least 10 times.

Demand 7: The controller must not be so fast that the VLT ramp limits the
speed. The accuracy of the controller must be �1%, that is a maximum of
0.3 m

s
at 30 m

s
. A 0:3 m

s
step, corresponding to a 100 mV input step, takes

10 ms when the ramp time from 0 V to 10 V is set to 1 s. It means that
the rise time and fall time of the controller must be at least tr > 0:08 s.

Demand 8: The overshoot must be within the demand of �1% accuracy.

Demand 9: The system must have no tracking error for ramp input.

Demand 10: The system must deliver a stable air velocity, within �1% of
the desired value, in the wind tunnel within the limits of 0�30 m

s
.

11.1.1 Test 6

For this demand the following test is speci�ed.

Test 6: Use the procedure of test 5 to save and load a �le into MatlabTM

and use the plot command to plot the air velocity response vs. the time
vector and compute the sample time. Read the rise time from the plot
and compute the number of samples on a rise time by multiplying with
the sample frequency. According to the demand this has to be at least
10.

92

11.1 Demands for the Control Algorithm 93

On �gure 11.1 a plot of the step response from 15 m
s
to 17.5 m

s
is shown. The

rise time is read to be 1.8 s and hence the number of samples on a rise time is
90. This controller ful�lls the given demand.

72 74 76 78 80 82 84 86

15

15.5

16

16.5

17

17.5

Time [s]

A
ir

F
lo

w
 [m

/s
]

Figure 11.1: Rise time for the system with the PID controller.

11.1.2 Test 7 and 8

To these demands the following test is speci�ed.

Test 7 and 8: Use the procedure in test 5 to produce, save and load a positive
step response into MatlabTM. Plot the response vs. time with the plot
command. Verify that the overshoot present is within 0.1% of the steady
state air velocity. Compare the submitted value with the last recorded
values of the test, and see that they are the same within �1%. Compute
the rise time and verify that it ful�lls the demand. Repeat the procedure
for a negative step.

The error in steady state is read from a plot inMatlabTM to be approximately
�2% by which the demand is not ful�lled. This error could be caused by noise
from the sensors or from the control signal. This could probably be reduced by
introducing a better �lter than the one used in the PID controller with �lter
in section 6.4 on page 47.

A way to further improve the controller is to introduce an inner feedback loop
to control the speed of the AC-motor. This was not done as it was not possible
to install an encoder on the motor.

94 Chapter 11: Accept Test

The overshoot shown on �gure 11.1 is approximately 20 % which is greater
than the demand allows. This, however, is not critical to the operation of the
system. To eliminate the overshoot, a detuning of the controller could be made,
which would also make the system respond slower.

11.1.3 Test 9

To this demand the following test is speci�ed.

Test 9: Specify a ramp input to the system and submit the input. Use the
procedure of test 5 to save and load the result into MatlabTM. View
the resulting output with the plot command and compare it with the
submitted ramp. The system response must follow the speci�ed ramp
within �1%.

To illustrate the ramp error a plot of a ramp input from 0�20 m
s
in 2 min is

shown on �gure 11.2.

60 80 100 120 140 160 180 200 220 240
10

12

14

16

18

20

Time [s]

A
ir

F
lo

w
 [m

/s
]

Figure 11.2: Response to a ramp input plot together with the corresponding
input ramp.

This ramp input is chosen because a steeper ramp is never used for measure-
ments and a �atter ramp will make the ramp error smaller. The ramp error
for the chosen ramp is approximately zero, which ful�lls the given demand.

11.1.4 Test 10

To this demand the following test is speci�ed.

11.1 Demands for the Control Algorithm 95

Test 10: Submit di�erent values of air velocity for the system and let the
same velocity be present for 3 min. Examine the resulting air velocity
with MatlabTM and with a separate hand held air velocity meter in
the test section. The air velocity must not vary more than the speci�ed
�1%.

It was not possible to make this test due to the calibration errors of the pressure
sensors.

Chapter 12

Conclusion

The purpose of this project was to design and implement a controller for a
wind tunnel. The tunnel is owned by the Institute of Energy Technology and
is primarily used for scienti�c purposes. Therefore the project has been made
in cooperation with the Institute of Energy Technology.

The control of the wind tunnel should be accessed through a graphical user
interface (GUI) with the possibility to give readouts of the current temperature
and air velocity in the test section of the wind tunnel and to let the user specify
the progress of the air velocity in the test section. Moreover, the air velocity
and temperature in the test section of the tunnel should be stored in a log �le.

To be able to design the controllers, the wind tunnel was analyzed and a
mathematical model was derived. In addition to that, an experimental model
of the total wind tunnel system, including the motor and VLT, was made.
The experimental model was used since it was not possible to derive a usable
mathematical model for the motor and VLT.

It was the hope that a better model of the wind tunnel could be obtained
before the end of the project, but this was not posible since the real measuring
equipment was not installed before the end of the project. The consequence of
this is that the experimental model is based on measurements with a handheld
instrument and the controllers have been designed on this basis but imple-
mented and tested in the tunnel with the right sensors.

The demands for the control system and for the controllers were structured
in the demand speci�cation and six modules were speci�ed in the moduliza-
tion. The modules are: Setpoint Changer, Classical Controller, State-space
Controller, Choice of Controller, Hardware Con�guration and Software. After
this, three di�erent controllers have been designed and tested in the wind tun-
nel, namely: a PID controller, a PID controller with �lter and a state-space
controller. This concludes that the project covers both modern and classical
control strategies.

Each of the three controller designs follow the strategy of making a continuous-
time prototype followed by a discretisation to enable the implementation on
a PC. This approach meant that the PID controllers had to be adjusted after

96

12.1 Improvements 97

the design in order to ful�ll the discrete-time demands. This could be avoided
by using a discrete-time design method instead.

Due to the very late instrumentation of the wind tunnel and a miscalibration of
the pressure transducers, the measured and tested controllers did not conform
to the calculated and simulated ones.

After a tuning of the PID controller it was, however, possible to successfully
apply this on the wind tunnel whereas the state-space controller and the PID
controller with �lter did not prove to be suitable solutions with the present
models.

The simulated PID controller with input �lter could be implemented directly in
the wind tunnel without any further adjustments, but the rise time of the tested
closed-loop system was measured to be 4 seconds instead of the simulated 0.7�
0.8 seconds.

The implemented GUI works and ful�lls the demands. It is posible to control
the tunnel through the GUI and it o�ers the opportunity to store the air
velocity and temperature in a log �le. The data in the log �le can subsequently
be viewed in MatlabTM e.g. and used for further analysis.

12.1 Improvements

The performance of the controllers can be improved with a better tunnel model
after a recalibration of the sensors. On top of that, the controllers could be
designed to have a zero tracking error.

The temperature readouts on the GUI are clearly in�uenced by electrical noise.
This can be improved by placing the measuring circuit (the Wheatstone bridge
and ampli�er) near the PT100 sensor and transmitting the 0�10 V signal to the
data acquisition card. The PCB layout for this measuring circuit is enclosed
in appendix J.

To further reduce the in�uence of noise on the controller, the input channels
on the data acquisition card could be equipped with active lowpass �lters with
a 0 dB DC-gain.

To make the air velocity readouts more precise, the temperature must be in-
cluded in the calculation of the air velocity.

An improvement of the GUI would be the opportunity to specify the progress
of the air velocity by de�ning the velocity at di�erent times as sketched in
�gur 12.1.

In total the project has produced a basis on which a fully functional control
system can be built after a sensor calibration and thereby a better model of the

98 Chapter 12: Conclusion

t

v(t)

Figure 12.1: Speci�cation of times and velocities in the air velocity.

system. The ideas pointed out through this project can be used as guidelines
to improve the wind tunnel control system.

Bibliography

[cdrom] Enclosed CDROM for this project

[dc] Franklin, Powell & Workman Digtal Control of Feedback System

Addison Wesley ISBN: 0201820544

[fc] Franklin, Powell & Emami-Naeini Feedback Control of Dynamic

System Addison Wesley ISBN: 0201527472

[haugen] Finn Haugen Regulering av dynamiske systemer Tapir ISBN: 82-
519-1433-7

[ogata] Ogata, Katsuhiko Modern Control Engineering, second edition

Prentice-Hall, Inc., 1990 ISBN: 0135987318

[pukkila] Pukkila, Olli Handbook of Modern Fan Technology Ilmateollisuus,
1987

[ståbi] Ventilation ståbi Teknisk Forlag A/S, 1990ISBN: 8757111073

99

AppendixA

Simulations

In this appendix the simulations of the three controllers will be described.

The conclusions to the simulation of each controller is placed in their respective
chapters.

A.1 Simulation of Classical Controllers

In order to validate the di�erent controller designs further, a simulation is
used. The simulation is done using the MatlabTM toolbox SimulinkTM. The
things to be examined through the simulations are:

The use of control signal: This will be measured directly in the simulation
model.

The noise sensitivity: This is done by introducing noise on the reference
and on the control signal. The sources will be either sine or random
signals.

The response to ramp input: This will show the e�ects of the steady state
errors to ramp input.

A.1.1 The Simulation Model

The model contains a discrete-time realisation of the controller and a continuous-
time representation of the system. This is done since this will be the real con-
�guration of the system when it is implemented in the tunnel. This also means
that the control signal can not be altered faster than the sample frequency
allows. Further, a 0�10 V saturation block is inserted in the model to limit
the use of control signal. The limits are set such that the low limit is 0 V and
the high limit is 10 V. This is done to simulate the limitations in the output
signal introduced by the limit of output voltage in the data acquisition card.
The model is shown in �gure A.1.

The same model is used to simulate the controller with input �lter, the only
di�erence is that the discrete-time realization of the �lter is placed in front of

100

A.1 Simulation of Classical Controllers 101

Control signal u(t)

Reference signal r(t)

Output y(t)

Noise Input Noise Input

Step

Scope

Saturation

K

1

Proportional
term

z−1

Ts*K/Ti(z)

Integral term

0.685

s +6.44s+19.82

G_u(s)

K*Td.z−K*Td

z

Derivative term

Figure A.1: The SimulinkTM simulation model of the PID controller without
input �lter.

the controller.

Control signal u(t)

Reference signal r(t)

Output y(t)

Noise Input Noise Input

Step

Scope

Saturation

K

1

Proportional
term

z−1

Ts*K/Ti(z)

Integral term

Fn

Fd

Input filter

0.685

s +6.44s+19.82

G_u(s)

K*Td.z−K*Td

z

Derivative term

Figure A.2: The SimulinkTM simulation model of the PID controller with
input �lter.

The �lter and the controller parameters are not shown directly in the model.
Instead they are given by names and vectors. This is to avoid rounding error
that can arrise from typing the numbers directly in the model. The parameters
are therefore passed directly from theMatlabTM workspace to the simulation
model through the di�erent variables.

Since the models includes the transfer function Gu(s) the inputs needs to be
scaled to maximum 0:35. If it is desired to use input signals from 0�10 V, an
additional gain must be introduced in the feedback path, and just before the
controller.

102 Appendix A: Simulations

A.1.2 Simulation Results

Noise Rejection

In this part of the simulation the controller's ability to reject noise is examined.
The noise is introduced at the places where analogue signals are present in the
real setup, that is at the control signal and the messured signals (see �gure A.1
and A.2).

The simulation is run with two types of noise input: �rst with a sine input with
frequencies 5 Hz, 50 Hz and 1 kHz and then random noise with a variance of
0:0692. The choice of frequencies for the sine input are meant to cover the
di�erent noises from the slow control signal, the source voltage and the switch
harmonics. The noise is chosen to have an amplitude twice the amplitude of
the reference signal. The reference input is chosen to be a step from 0 to 0:0346
as in the previous simulation.

To be able to determine the noise rejection ability of the controller, the noise
is �rst introduced in the control signal, then in the feedback path. This is done
with all three noise frequencies and the random noise. The results are displayed
on the scope and in �gures A.3 to A.5

Sine Disturbances on the Control Signal

0 1 2 3 4 5 6 7
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Time (sek)

A
m

pl
itu

de

(a)

0 1 2 3 4 5 6 7
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Time (sek)

A
m

pl
itu

de

(b)

Figure A.3: (a) The output of the controller without �lter with sine noise on
u. (b) The output of the controller with �lter and sine noise on u.

Sine Disturbances on the Feedback Path

In the following the solid line is the output signal without disturbance the
dottet, dot-dash and dashed line are the output signal with 5 Hz, 50 Hz and
1 kHz noise respectivly.

A.1 Simulation of Classical Controllers 103

0 1 2 3 4 5 6 7
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

A
m

pl
itu

de

Time (sek)

(a)

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

A
m

pl
itu

de

Time (sek)

(b)

Figure A.4: (a) The output signal of the closed-loop system with no �lter and
sine noise in the feedback. (b) The control signal of the controller
without �lter with sine noise in the feedback.

0 1 2 3 4 5 6 7
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Time (sek)

A
m

pl
itu

de

(a)

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sek)

A
m

pl
itu

de

(b)

Figure A.5: (a) The output of the controller with �lter and sine noise in the
feedback. (b) The control signal of the controller with �lter and
sine noise in the feedback

104 Appendix A: Simulations

Random Noise Disturbance

In the following parts of the simulation the solid line indicates no disturbance,
the dotted line is noise on the feedback path, the dot-dash line is noise on the
control signal and the dashed line is noise both places.

0 1 2 3 4 5 6 7
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time (sek)

A
m

pl
itu

de

(a)

0 1 2 3 4 5 6 7
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Time (sek)

A
m

pl
itu

de

(b)

Figure A.6: (a) The output of the controller without �lter with random noise
in the Feedback. (b) The output of the controller with �lter and
random noise in the feedback.

Ramp Response

The purpose of this simulation is to see how the closed-loop system responds
to a ramp input. This means that the e�ect of the tracking error for ramp
input will be determined by simulation. The steepest ramp allowed is the
ramp speci�ed by the setpoint changer. This means a ramp with an incline of
0:0346, that is a ramp time of 10 s from zero to 100% output. This ramp is
used together with a ramp with an incline of 0:00346 to prove that a higher
incline, results in a larger tracking error.

The ramp in the simulation is produced by the ramp source and a saturation
block to terminate the ramp. The results of the simulation are displayed in
�gure A.7 and A.8.

The response to ramp input shows that the tracking error is reduced with the
ramp incline as expected.

Control Signal

The purpose of this simulation is to examine how much control signal the
controller uses to control the plant. This has to be investigated since the control

A.1 Simulation of Classical Controllers 105

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
m

pl
itu

de

Time (sek)

(a)

0 5 10 15
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

A
m

pl
itu

de

Time (sek)

(b)

Figure A.7: The response of the system with no �lter to the fastest ramp input
(a). The response of the system with no �lter to the slower ramp
input (b).

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (sek)

A
m

pl
itu

de

(a)

0 5 10 15
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Time (sek)

A
m

pl
itu

de

(b)

Figure A.8: The response of the system with input �lter to the fastest ramp
input (a). The response of the system with input �lter to the
slower ramp input (b).

106 Appendix A: Simulations

signal can only be between 0 and 10 V. This also means that the controller will
not work optimal at setpoints close to these limits. The simulation is performed
by setting the input step to 0:0346, which corresponds to a 1 V reference step.
The step is set to start after one second. The resulting changes in the control
signal can then be seen on the scope and in �gure A.9.

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sek)

A
m

pl
itu

de

Figure A.9: The use of control signal for the two controllers.

In general the controller with input �lter uses less control e�ort, i.e. control
signal, in any of the simulations than the controller without �lter. This is
because the �lter removes many of the disturbansis that the controller must
take care of in the controller without �lter.

A.2 Simulation of the State-space Compensator

Below is a list of the simulations of the state-space compensator, simulated in
MatlabTM and SimulinkTM:

� A step response without any disturbances.

� A step response with a 2 V sine disturbance on u.

� A step response with a sine disturbance on the feedback path from y
with an amplitude of 1

10
of the signal amplitude.

� A step response with a random signal on u.

� A step response with a random signal on the feedback path from y.

� A ramp response without any disturbances.

All step responses have been made with a step reference input from 0 to 0.0346,
resulting in a step from 0 to 1 V on the control signal u. The frequencies of the
sine signal is 5 Hz, 50 Hz and 1 kHz as in the simulation of the PID controller.

A.2 Simulation of the State-space Compensator 107

A.2.1 The Simulation Model

The simulation model is shown in �gure A.10. It has the same features as the

Control Signal Noise

yu

Feedback Noise

u y

Tunnel Model (step−up)

simout

To Workspace

Step
Scope

num1(z)

den1(z)

Observer

Magnitude
Quantizer

num2(z)

den2(z)

Integral Controller Control Signal
Saturation

Figure A.10: SimulinkTM block diagram of the simulation model.

block diagram in �gure 7.5 but with the following additions and modi�cations:

� The compensator has been replaced with the two discrete-time transfer
functions of equations 7.40 and 7.41.

� A saturation element has been added on the output of the compensator
with a maximum limit of 10 V so that the control signal u cannot exceed
this value.

� A magnitude quantizer has been added after the output of the integral
controller. The magnitude resolution is 10

211
V

digit
in accordance with the

I/O card speci�cations.

The data of the step responses have been stored in a variable simout and have
subsequently been plotted in MatlabTM. Only the plots from the step-up
simulations have been included.

A.2.2 Simulation Results

No Disturbances

Figure A.11 shows the step responses of the discrete-time system (solid line)
and the continuous-time system (dashed line) with no disturbances added.

From the �gure it can be seen that the discrete-time tranfer function has a dif-
ferent shape than the continuous-time tranfer function. Increasing the sample
frequency, i.e. decreasing Ts, will move the discrete-time response towards the
continuous-time response. Apart from the shapes of the responses, the features
(i.e. the rise time, settling time, etc.) are similar.

108 Appendix A: Simulations

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

A
m

pl
itu

de
Time [sec]

Figure A.11: Step responses with no disturbances. The solid line is the discrete-
time system and the dotted line is the continuous-time system.

Sine Disturbances on the Control Input

Figure A.12 shows the step response without disturbances (the solid line) and
with three sine signals added. The amplitude of the sine signals are 2 V. The

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

A
m

pl
itu

de

Time [sec]

Figure A.12: Step response with sine disturbances on u.

dotted line shows the response of a 5 Hz signal and it clearly re�ects the sine
signal on the normal step response. This is related to the bandwidth !b of the
closed-loop system: Systems with a large bandwidth have shorter rise times and
settling times and are therefore more sensitive to �uctuations in the control and
reference signals. Systems with a small bandwidth are slower but less sensitive
to noise. The bandwidth of the system is approximately 1:8

tr
= 5:8 rad

s
. This

formula only gives a rough estimate since it applies to second order systems.

The dot-dash line and the dashed line are the responses of a 50 Hz and a
1 kHz signal respectively. These frequencies clearly have very little e�ect on
the system.

A.2 Simulation of the State-space Compensator 109

Sine Disturbances on the Feedback Path

Figure A.13 shows the step response without disturbances (the solid line) and
with three sine signals added. The amplitudes of the sine signals are 1

10
of the

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

A
m

pl
itu

de

Time [sec]

Figure A.13: Step response with sine disturbances on the feedback path.

feedback signal, i.e. 0.00346. The dotted line is the response of a 5 Hz signal.
The dot-dash line and the dashed line are the responses of a 50 Hz and a 1 kHz
signal respectively. The 5 Hz and the 1 kHz signal produce approximately the
same error, whereas the 50 Hz signal produces the biggest error.

Random Signal Disturbances on the Control Input

Figure A.14 shows the step response without disturbances (the solid line) and
with two random signals added to the control input. The dotted line is the

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

A
m

pl
itu

de

Time [sec]

Figure A.14: Step response with random noise on u.

response of a signal with an amplitude variance of twice the control signal (peak
values of approximately �5 V) and has very little in�uence on the output.

The dot-dash line is the response of a signal with an amplitude variance of 20

110 Appendix A: Simulations

times the control signal (peak values of approximately �17 V) and this has
some in�uence on the output.

Random Signal Disturbances on the Feedback Path

Figure A.15 shows the step response without disturbances (the solid line) and
with two random signals added on the feedback path. The dotted line is the

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

A
m

pl
itu

de

Time [sec]

Figure A.15: Step response with random noise on the feedback path.

response of a signal with an amplitude variance of 1
100;000

of the feedback signal

(peak values of approximately � 1
15

of the feedback signal) and has only little
in�uence on the output. The dot-dash line is the response of a signal with
an amplitude variance of 1

10;000
of the feedback signal (peak values of approxi-

mately �1
5
of the feedback signal) and has a big in�uence on the output.

Ramp Response

Figure A.16 shows the ramp response without disturbances together with the
ramp input.

The slope of the ramp is 0.0346 which gives the maximum input (0.346) after
10 seconds.

From the �gure (while plotted in SimulinkTM) it has be read that the tracking
error is about 0.0091.

Control Signal

Figure A.17 shows the control signal for a step response without any distur-
bances (the solid line) and with the 2 V random noise applied to the control
input. It can be seen that the control signal has a peak value of approximately
2.5 V for both step responses and that the noise signal results in additional
control signal �uctuations with an amplitude of about 0.3 V.

A.2 Simulation of the State-space Compensator 111

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

A
m

pl
itu

de

Time [sec]

Figure A.16: Ramp response without noise.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

A
m

pl
itu

de

Time [sec]

Figure A.17: The control signal for a step response wihtout noise and with
random noise on the control input.

AppendixB

Win32 API

To ease the programming of applications for Windowsr
 the developers of
Windows r
 have written functions that can be used in Windows r
 program-
ming.

The description of, and the header for the C functions that can be accessed
through the Win32 API are documented in the Win32api.hlp �le [cdrom,
win32api.hlp].

B.1 Common Graphical Elements in a Windows r
 Pro-

gram

In the Win32 API a number of graphical elements that can be used to create
a GUI are de�ned. Two functions to create graphical elements are de�ned:
CreateWindow and CreateWindowEx. The di�erence between these two func-
tions is that with the use of CreateWindowExmore options for the window are
available. The CreateWindowEx is typically used to create the main window of
a program because it can also take a user de�ned window class as an input. In
contrast the CreateWindow only works with prede�ned window classes.

B.1.1 User De�ned Window Classes

In order to create a user de�ned window class, a type de�nition in the Win32
API is available. The type is WNDCLASSEX where information about the initial
position on the screen, how the icon for the .exe �le should look, how the cursor
should look in the window, the callback funtion for the window etc. can be set.

When these parameters are properly set the new window class has to be regis-
tered as a new window class. When the window class is registered as many win-
dow as wanted can be created from this new class using the CreateWindowEx
function.

112

B.2 The Windows r
 Message Queue 113

B.1.2 Prede�ned Window Classes

In a window created with the CreateWindowEx function more windows can
be created either by other user de�ned window classes or by using some of
the prede�ned window classes. The most commonly used prede�ned window
classes (to be used with CreateWindow function) are listed below:

EDITBOX: A box where the user can insert text.

LISTBOX: A box where the program can write text.

BUTTON: A box where the user can click.

STATIC: A box where the program can write static text.

When one of these boxes is to be created with the CreateWindow function it
needs an identi�er. This is done to separate message handling for each of the
created boxes. More about message handling will be explained later in this
chapter.

B.2 The Windows r
 Message Queue

The �rst time a window is created in a Windowsr
 program a message queue
is de�ned. Every time there is any keyboard or mouse activity in a graphical
element within the window the Windows r
 kernel will send a message to the
program, where the window was created.

Because it is a common problem to distribute messages from the Windowsr

kernel to functions that handles the messages (the callback functions) the
Win32 API o�ers a way to do this. If this way is used the last code lines in
the WinMain function must be as given in program B.1.

Program B.1
while(GetMessage(&Msg, NULL, 0, 0) > 0)

{

TranslateMessage(&Msg);

DispatchMessage(&Msg);

}

This code will then call the right callback function when it receives a message
from the kernel. This message handling is illustrated in �gure B.1.

As shown in the �gure, 3 parameters are speci�ed in the callback function
when a message is sent. The �rst is the message parameter: this is used by the
Windowsr
 kernel whenever there is any activity in a window. Below the most
important Windows r
 messages is listed:

114 Appendix B: Win32 API

{

{

Message from
Kernel

234 ID_1

ID_2

ID_3

EDITBOXES associated with callback func. 1

Callback function 2

File

LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)

BOOL CALLBACK DialogCallBack(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)

}

MessageHandling

}

MessageHandling

Callback function 1

 WndProc(hwnd,WM_COMMAND,ID_1,0);
Callback function 1 is called with:

The Last code lines in WinMain

while(GetMessage(&Msg,NULL,0,0) > 0)

{

}

TranslateMessage(&Msg);

Dispatch(&Msg);

The GUI seen on the screen

Figure B.1: Illustration of how a user activity will cause a callback function to
be called.

B.3 Windows r
 Resource Files 115

WM_CREATE: This message is sent just after the window is created.

WM_COMMAND: This message is sent whenever there is any activity
within the speci�c window.

WM_PAINT: This message is sent when the window needs to be repainted.

WM_CLOSE: This message is sent when the window has to be closed.

WM_DESTROY: This message is sent whenever an application is to be
closed or killed.

The two other parameters are user de�ned. This means that whenever a graph-
ical element is created it needs an identi�er. Whenever there is any activity
in a graphical element the Windowsr
 kernel will send a message with the
message parameter set to WM_COMMAND and the second parameter to the
identi�er of the element and the last parameter set to 0.

Of course the programmer can send messages to a callback function whenever
it is desired. All that is needed to send a message to a callback function is the
HWND parameter which the Win32 API identi�er for windows and dialogboxes.
In such a call to a callback function the three other parameters can be speci�ed
to whatever wanted.

B.2.1 Message Handling

When the callback functions are called it is quite easy to control the handling
of the graphical elements. It is simply a matter of testing the three parameters
the callback function is called with and act in accordance with the case that
is found.

B.3 Windows r
 Resource Files

In order to reduce the number of code lines for menus and dialogboxes a
Windowsr
 resource �le can be written. This resource �le has its own compact
syntax and therefore it is often recommended to use applications that can write
resource �les.

When a menu or a dialogbox is created in the resource �le it needs an identi�er.
The messages that is sent when a menu is clicked is actually the same as with
all other graphical elements: the message parameter is WM_COMMAND, the second
is the identi�er and the last is 0.

Dialogboxes work exactly like windows. A dialogbox has its own callback func-
tion and the elements within it need their own identi�ers.

116 Appendix B: Win32 API

B.4 Pipes

One of the disadvantages of the Windows r
 message system is that it is slow.
Through tests it was seen that messages between two processes cannot be sent
with 50 Hz if they are sent with Windowsr
 messages.

A pipe is a way to make a communication between threads or processes (or
a tread and a process). It de�nes some shared memory for in- and output for
each end of the pipe. A pipe is a �rst in �rst out (FIFO) bu�er.

A Windowsr
 pipe actually works like the Windows r
 �le system. When the
pipe is created it can be accessed with the normal Win32 API read and write
�le functions.

A named pipe can be made where the name of the pipe is speci�ed and it
is therefore easy to create and connect to. A pipe is client/server oriented.
Hence, the server process (or thread) creates the pipe and the client process
(or thread) connects to the pipe wi th the same attributes as when the server
process created it, e.g. size of in- and output bu�ers, access attributes (read
and write access) etc.

AppendixC

Tunnel Measurements

Test purpose

The purpose of this test is to collect information about the step response of
the wind tunnel. The test contains two parts. The �rst investigates the step
response to a staircase input and the second investigates the step response
from rest. The �rst part is used to estimate the transfer function of the system
and the second is used to estimate the delay in the system when started from
rest. Either part consists of more measurements.

Equipment

� Air velocity and temperature sensor: SwemaAir30.

� PC with test software and I/O-card.

� 1. order analogue low pass �lter.

Test description (part one)

The PC is connected as shown in �gure C.1.

One of the analogue outputs of the data acquisition card is connected to the
VLT analogue input and the output from the air velocity and temperature
sensor is connected to an analogue input on the data acquisition card.

The test software produces a series of ten 1 V steps and stores the output in a
�le. To minimize the in�uence of noise in the measurements, the input signal
to the PC is fed through an analogue low pass �lter, just before it enters the
data acquisition card. The sample rate is 50 Hz and the �lter's 3 dB frequency
is 150 Hz.

The air velocity sensor is placed in the middle of the tunnel to obtain the
highest air velocities.

The test is performed by executing the test software from the computer, with
both an upward and downward going stair. The results of the measurements

117

118 Appendix C: Tunnel Measurements

Test Section

VLT

Wind speed sensor

PC

53 55

Figure C.1: The test setup for part one of the test.

can be seen on �gure C.2.

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (sec)

A
m

pl
itu

de

20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (sec)

A
m

pl
itu

de

Figure C.2: Step up and step down measurement.

Test description (part two)

The test equipment is connected in the same way as in part one.

The test software produced 4 steps. One from zero to 2.5 V, one from zero
to 5 V, one from zero to 7.5 V and the last from zero to 10 V. The responses
(�gure C.3) were logged with the data acquisition card and stored in a �le.

The VLT setup during the measurements is shown in appendix E. The only
di�erence is parameter 207 (Ramp Down Time) which is set to 2 seconds.
Otherwise the VLT shows warnings and alarms on the display and sometimes
it stops the motor.

119

0 2 4 6 8 10 12 14 16 18 20
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (sec)

A
m

pl
itu

de

Figure C.3: Four step up measurements (2.5 V, 5 V, 7.5 V and 10 V).

AppendixD

Butterworth Filter

The �lter used to �lter the measured signals is a second-order Butterworth
lowpass �lter. The Butterworth �lter was used since it has zero ripple in the
passband and in the stopband in contrast to a Chebyshev �lter e.g.

The �lter coe�cients are found by trial and error, by plotting the �ltered and
un�ltered signal in the same window and see if they �t. The plot in �gure D.1
was found using the MatlabTM command [B A]=butter(2,.04);.

18 20 22 24 26 28 30 32
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Filtered and unfiltered signal zoomed in

O
ut

pu
t v

ol
ta

ge
 fr

om
 m

ea
su

re
m

en
t d

ev
ic

e

Time [sec]

Figure D.1: Plot of the �ltered and the un�ltered signal.

120

Appendix E

VLT Setup

The VLT has to be set up as follows, when the control system is in use. Motor
settings and standard settings are not listed here, they are all set in SETUP 1
in parameter �002 Setup� of the VLT. Only important settings for the control
system are listed.

Parameter Setting
002 Active Setup SETUP 2
100 Con�guration OPEN LOOP
203 Reference Handling REMOTE
204 Minimum Reference 0.000
205 Maximum Reference 50.000
206 Ramp Up Time 00001
207 Ramp Down Time 00001
210 Reference Type EKSTERNAL/PRESET
301 Digital Input FREEZE REFERENCE
302 Digital Input START
305 Digital Input PRESET REF.ON
308 Analog Input Voltage REFERENCE
309 Terminal 53, Minimum Scaling 0.0 V
310 Terminal 53, Maximum Scaling 10.0 V

Table E.1: VLT setup.

121

Appendix F

Controller test

To verify the controller designs, the controllers have been implemented on a
PC and a number of measurements made through the GUI.

The purpose of the measurements is to show:

� The step responses.

� The ramp responses.

To test the controllers, two step responses have been made: one where air
velocity steps from 5 m

s
to 7.5 m

s
followed by steps from 7.5 m

s
to 5 m

s
and one

with steps from 15 m
s
to 17.5 m

s
followed by steps from 17.5 m

s
to 15 m

s
.

The steps correspond to a change of 1 V on the control signal, which is the
same condition as when the controllers where simulated.

To test how the controllers respond to a ramp input, a ramp test was made with
the air velocity graduately increasing from 0 m

s
to 20 m

s
and down again. All

tests have been made through the GUI where the desired steps and ramps were
entered. The data attached to each test was logged in a �le and subsequently
plotted inMatlabTM for inspection. The logged data is the actual air velocity,
reference air velocity and the control signal from the controller.

As a consequence of miscalibrations of the sensors it was not possible to take
any useful measurements with the sensors. The sensor outputs from a step
sequence of ten 1 V steps are shown in �gure F.1.

The three low pressure sensors 1, 3 and 5 should be reading 10 V when the
air velocity is above 14 m

s
. Refering to the �gure, this is certainly not the case

and this could imply a calibration error of these.

In order to get acceptable data to cover the air velocity range from 0 m
s
to

24.8 m
s
the three high pressure sensors 2, 4 and 6 were used. Therefore, the

signal used in the controller is the mean of the values from these three sensors.
This value is not entirely correct, as it can be con�rmed by regarding the
di�erence between the sensors values on the �gure. On the other hand, this is
the best possible measurement of the air velocity.

122

F.1 PID Controller 123

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

Figure F.1: Output from the six pressure sensors corresponding to input se-
quence increasing by 1 V in steps.

As a consequence of the installation of new pressure sensors in the wind tunnel,
the transfer function for the tunnel has changed after the controllers have been
designed.

The new sensor gains are higher than before, resulting in the DC-gain for
the tunnel model being a factor 28.9 higher. To compensate for this DC-gain
the controllers are adjusted. In the case of the PID controllers it is done by
dividing the proportional factorK by the factor 28.9. The state-space controller
is changed by dividing the elements of the C matrix by 28.9, and then �nding
the new controller equations.

In the following sections the three controller designs are tested with the above
mentioned criteria. The steps from 15 m

s
to 17.5 m

s
and down are shown to-

gether with the ramp responses.

F.1 PID Controller

It was not possible to perform the tests with the PID controller design from
section 6.3, because of a current limitation in the VLT. This limitation occurs
when the output signal from the controller raises too fast, which means that
the controller is to aggressive for the VLT. This error could be a consequence
of the new sensors, resulting a change in the tunnel transfer function.

In order to make the PID controller work, a coarse detuning was made to match
the dynamics of the tunnel. The tuning was made by running the controller
application and observing the wind tunnel while �tting the PID parameters.
The new parameters found for the PID are:

K = 0:5 Ti = 0:5 Td = 0:05 (F.1)

124 Appendix F: Controller test

The results from the test are shown in �gure F.2 (step input) and F.3 (ramp
input), respectively, where parts (a) show the responses from tunnel and parts
(b) show the control signals.

0 1000 2000 3000 4000 5000 6000
12

13

14

15

16

17

18

19

(a)

0 1000 2000 3000 4000 5000 6000
6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

(b)

Figure F.2: Step response from the tunnel with a PID controller. (a) shows
the step response and (b) the corresponding control signal.

0 2000 4000 6000 8000 10000 12000 14000 16000
0

5

10

15

20

25

(a)

0 2000 4000 6000 8000 10000 12000 14000 16000
0

1

2

3

4

5

6

7

8

9

(b)

Figure F.3: Ramp response from the tunnel with a PID controller. (a) shows
the ramp response and (b) the corresponding control signal.

F.2 PID Controller with Filter

The PID controller with �lter is slower than the PID without �lter and there-
fore it was possible to make the tests with the controller design found in sec-
tion 6.4. The results from the tests are shown in �gure F.4 (step input) and
F.5 (ramp input), respectively.

F.2 PID Controller with Filter 125

0 1000 2000 3000 4000 5000 6000
14.5

15

15.5

16

16.5

17

17.5

18

(a)
0 1000 2000 3000 4000 5000 6000

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

(b)

Figure F.4: Step response from the tunnel regulated with the PID controller
with �lter. (a) shows the step response and (b) the corresponding
control signal.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
−20

−10

0

10

20

30

40

(a)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

1

2

3

4

5

6

7

8

9

(b)

Figure F.5: Ramp response from the tunnel regulated with the PID controller
with �lter. (a) shows the ramp response and (b) the corresponding
control signal.

126 Appendix F: Controller test

F.3 State-Space

As the PID controller without �lter, the simulated state-space controller turned
out to be too aggressive, and therefore it had to be detuned. Because of the
errors in the wind tunnel model it was not possible to get good results with
the state-space controller. The results are shown in �gure F.6 and F.7 where
the poles for the system are placed in -3, -4 and -4.1. These were found with a
hand-tuning as with the PID controller. The estimator poles have been placed
in -10 and -11.

0 1000 2000 3000 4000 5000 6000
12

13

14

15

16

17

18

19

(a)

0 1000 2000 3000 4000 5000 6000
5.5

6

6.5

7

7.5

8

(a)

Figure F.6: Responses with the state-space controller regulating the tunnel.
(a) shows the response to a step and (b) the corresponding control
signal.

0 2000 4000 6000 8000 10000 12000 14000
0

5

10

15

20

25

(a)

0 2000 4000 6000 8000 10000 12000 14000
0

1

2

3

4

5

6

7

8

9

(b)

Figure F.7: Responses with the state-space controller regulating the tunnel.
(a) shows the response to a ramp input and (b) corresponding
control signal.

AppendixG

Component List

The components used are listed in table G.1 The schematic and board layout
for use of these components follows in the next appendices.

Component Value
R1�R6 1 k

R7�R12 1 k

Ro1 20 k

Ro2 10 k

Ro3 20 k

Ro4 10 k

Rt1 40 k

Rt2 40 k

Rt3 100

Rt4 226

Rt5 226

Rt6 300 k

Rt7 300 k

Op-Amp 1�5 Tlc274cn
Connector 37 pin female for print mount
Connector 20 pin female type IDC
Power Supply 2 � 15 Vdc

Table G.1: Components used for the connection unit and the PT100 circuitry.

127

AppendixH

I/O Card Connector

The 37 pin analogue D-sub female connector and the 20 pin digital output
male connector of the I/O card is shown in �gure H.1

1

3

5

7

9

11

13

15

17

19

2

4

8

10

12

14

16

18

20

6

DO0

DO2

DO4

DO6

DO8

DO10

DO12

DO14

GND

+5V

DO1

DO3

DO5

DO7

DO9

DO11

DO13

DO15

GND

+12V

AI0

AI2

AI3

AI4

AI6

AI7

AI5

AI1
AI8

AI9

AI10

AI11

AI12

AI13

AI15

A.GND

A.GND

AO1

ExtRef

AO2

GATE0

COUT

N/C

ExtCLK

AI14

GATE

A.GND

A.GND

V.REF

ExtRef2

+12V

A.GND

D.GND

COUT0

ExtTrg

N/C

+5V

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

28

29

30

31

32

33

34

35

36

37

27

Figure H.1: 37 pin analogue female connector (left) and the 20 pin digital
output male connector at the I/O card (right).

128

Appendix I

Schematic

The schematic for the connection unit is shown in �gure I.1 and the schematic
for the PT100 circuitry is shown in �gure I.2.

129

130 Appendix I: Schematic

5 5

4 4

3 3

2 2

1 1

D
D

C
C

B
B

A
A

C
on

ne
ct

io
n

U
ni

t

O
p-

A
m

p1
O

p-
A

m
p2

1.
1

G
ro

up
63

1
-

R
eg

ul
at

io
n

of
A

ir
F

lo
w

in
a

V
in

d
T

un
ne

l

A

1
1

T
ue

sd
ay

,M
ay

28
,2

00
2

T
itl

e

S
iz

e
D

oc
um

en
tN

um
be

r
R

ev

D
at

e:
S

he
et

of

R
1

S
en

so
r

3 -
+

R
5

R
12

R
8

15
V

dc

D
ig

ita
lO

ut

12
34
56
78
910
1112
1314
1516
1718
1920

R
2

S
en

so
r

4 -
+

R
9

R
3

S
en

so
r

5 -
+

R
6

R
10

S
en

so
r

1 -
+

R
4

S
en

so
r

6 -
+

S
en

so
r

2 -
+

R
11

R
7

15
V

dc
R

o2
R

o4

-+

V
LT

18
20
55
53

S
w

itc
h

-
+

R
o1

-+

R
03

A
na

lo
g

I/O
37

pi
n

19
18

17
16

15
14

13
12

11
10

9
8

7
6

5
4

3
2

1

20
21

22
23

24
25

26
27

28
29

30
31

32
33

34
35

36
37

P
T

10
0

ou
tp

ut
pi

n
1

P
T

10
0

ou
tp

ut
pi

n
20

P
T

10
0

+
15

V

P
T

10
0

G
N

D

Figure I.1: Schematic of the connection unit.

131

5 5

4 4

3 3

2 2

1 1

D
D

C
C

B
B

A
A

O
p-

A
m

p4

O
p-

A
m

p3

O
p-

A
m

p5

P
T

10
0

sc
he

m
at

ic

1.
1

G
ro

up
63

1
-

R
eg

ul
at

io
n

of
A

ir
F

lo
w

in
a

V
in

d
T

un
ne

l

A

1
1

T
ue

sd
ay

,M
ay

28
,2

00
2

T
itl

e

S
iz

e
D

oc
um

en
tN

um
be

r
R

ev

D
at

e:
S

he
et

of

R
t5

R
t1

-+

P
T

10
0

-
+

R
t2

-+

R
t4

R
t7

R
t3

-+
R

t6

A
na

lo
g

ou
tp

ut
pi

n
1

A
na

lo
g

ou
tp

ut
pi

n
20

C
on

ne
tio

n
U

ni
t+

15
V

C
on

ne
ct

io
n

un
it

G
N

D

Figure I.2: Schematic of the PT100 connection.

Appendix J

Board Layout

The print layout for the connection unit is shown in �gure J.1 and �gure J.2.
The print layout for the PT100 connection is shown in �gure J.3.

Figure J.1: Print layout for the connection unit. 1:1

132

133

Figure J.2: Component placement.

134 Appendix J: Board Layout

Figure J.3: Print layout for the PT100 connection. 1:1

AppendixK

CDROM contents

� Project Report

� Data Sheets

� Software

� PelecanWare 1.0

� PelecanPlot

� Schematics

� User's Manual

� Simulations

� Links

� Abstract

� The Project Group

135

	Preface
	Contents
	Chapter 1 - Introduction
	Chapter 2 - Analysis
	2.1 Model of the Wind Tunnel
	2.1.1 Inserting Values in the Transfer Function

	2.2 Motor, VLT and Fan
	2.2.1 Calculating Values in the Model

	2.3 The Overall Model
	2.4 Model from Measurements
	2.4.1 Results from the Step-up
	2.4.2 Results from the Step-down

	2.5 The nal Model
	2.6 Sensors
	2.6.1 Pressure Transducers
	2.6.2 Temperature Sensor

	Chapter 3 - Demand Specification
	3.1 System Description
	3.2 System Function
	3.3 System Limitations
	3.4 The Future of the System
	3.5 User Pro le
	3.6 Demands to the Development Process
	3.7 Parts to be Delivered to the Customer
	3.8 Assumptions
	3.9 Specific Demands
	3.10 Internal Interfaces
	3.11 External Interfaces
	3.12 Accept Test Speci cation

	Chapter 4 - Modulization
	Module 1 - Setpoint Changer
	Module 2 - Classical Controller
	Module 3 - State-space Controller
	Module 4 - Choice of Controller
	Module 5 - Hardware Con guration
	Module 6 - Software

	Chapter 5 - Module 1 - Setpoint Changer
	5.1 Module Considerations
	5.1.1 Module Demands

	5.2 Module Design
	5.3 Test of Setpoint Changer
	5.4 Conclusion

	Chapter 6 - Module 2 - Classical Controller
	6.1 Module Demands
	6.2 Module Considerations
	6.3 Design of Controller without Filter
	6.3.1 Discretisation

	6.4 Design of Controller with Filter
	6.4.1 Discretisation

	6.5 Simulation of the Classical Controllers
	6.5.1 Results

	6.6 Test of the Classical Controllers
	6.7 Conclusion

	Chapter 7 - Module 3 - State-space Controller
	7.1 General State-Space Description
	7.1.1 Controllability and Observability

	7.2 State-Space Description of the Wind Tunnel
	7.2.1 State Feedback Control
	7.2.2 Observer Design
	Integral Control

	7.3 State-space Description of the Compensator
	7.3.1 Discretisation of the Compensator

	7.4 Choice of Pole Locations
	7.4.1 Computing the Compensator Matrices

	7.5 Simulation of the State-space Controller
	7.6 Test of the State-space Controller
	7.7 Conclusion

	Chapter 8 - Module 4 - Choice of Controller
	8.1 Comparing the Simulated Features
	8.2 Comparison Using a Cost Function
	8.2.1 Performance Index of the Simulated Controllers
	8.2.2 Performance Index of the Measured Controllers

	8.3 Choice of Controller

	Chapter 9 - Module 5 - Hardware Configuration
	9.1 The Pressure Transducers
	9.2 The Temperature Sensor
	9.3 The VLT
	9.4 The PC

	Chapter 10 - Module 6 - Software
	10.1 Protocol
	10.2 GUI Design
	10.2.1 Main Thread
	10.2.2 Buffer Thread

	10.3 Controller Process Design
	10.3.1 Initialization
	10.3.2 Determine the Actual Air Velocity and Temperature
	10.3.3 Calculate the next Reference
	10.3.4 Calculate the Next Control Signal
	10.3.5 Send Data to the GUI Process
	10.3.6 Receive Data from the GUI Process

	10.4 Software Test
	10.4.1 Test 1
	10.4.2 Test 2
	10.4.3 Test 3
	10.4.4 Test 4
	10.4.5 Test 5

	10.5 Conclusion

	Chapter 11 - Accept Test
	11.1 Demands for the Control Algorithm
	11.1.1 Test 6
	11.1.2 Test 7 and 8
	11.1.3 Test 9
	11.1.4 Test 10

	Chapter 12 - Conclusion
	12.1 Improvements

	Bibliography
	Appendix A - Simulations
	A.1 Simulation of Classical Controllers
	A.1.1 The Simulation Model
	A.1.2 Simulation Results

	A.2 Simulation of the State-space Compensator
	A.2.1 The Simulation Model
	A.2.2 Simulation Results

	Appendix B - Win32 API
	B.1 Common Graphical Elements in a Windows Program
	B.1.1 User Defined Window Classes
	B.1.2 Prede ned Window Classes

	B.2 The Windows Message Queue
	B.2.1 Message Handling

	B.3 Windows Resource Files
	B.4 Pipes

	Appendix C - Tunnel Measurements
	Appendix D - Butterworth Filter
	Appendix E - VLT Setup
	Appendix F - Controller test
	F.1 PID Controller
	F.2 PID Controller with Filter
	F.3 State-Space

	Appendix G - Component List
	Appendix H - I/O Card Connector
	Appendix I - Schematic
	Appendix J - Board Layout
	Appendix K - CDROM contents

